Skip to main content
Log in

Spectrofluorometric analysis of length-dependent conformational changes in cardiac troponin C

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Length modulation of cardiac muscle is manifested in the Frank–Starling relation of the heart. Recently, it has been shown that length-dependent changes in SH reactivity of cardiac troponin C (cTnC) occurred in association with cross-bridge attachment and Ca2+. However, the presence of two SH groups (Cys-35 and Cys-84) in the regulatory region of cTnC complicates efforts to detect conformational changes. In this study skinned porcine cardiac fibers were reacted with 7-diethylamino-3-[4′maleimidylphenyl]-4-methylcoumarin (CPM). Alkaline urea gel electrophoresis, along with protein elution, was used to isolate filament bound cTnC. Analysis of fluorescence measurement showed that there is a Ca2+-increased fluorescence for CPM-labeled cTnC in long fibers (sarcomere length = 2.2 ∼ 2.5 μm) but not in short fibers (sarcomere length = 1.6 ∼ 1.8 μm). In addition, the labeled cTnC was measured for the fluorescence decrease over time by adding a non-fluorescence energy acceptor, 4-dimethylaminophenylazophenyl-4′maleimide (DABMI), in the presence and absence of Ca2+. Fluorescence quenching by DABMI is not affected by Ca2+ in long fibers but it is significantly increased in short fibers. However, the fibers maintained in the relaxed state with 5 mM MgATP and 1 mM Vanadate showed no length effect on the CPM-labeled cTnC in terms of the Ca2+-mediated changes in fluorescence spectrum and in fluorescence quenching by DABMI. All together, our results suggest that the relative reactivities of Cys-35 and Cys-84 vary with sarcomere length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen DG and Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17: 821-840.

    PubMed  CAS  Google Scholar 

  • Allen DG and Kentish JC (1988) Calcium concentration in the myoplasm of skinned ferretvent ricular muscle following changes in muscle length. J Physiol (Lond) 407: 489-503.

    CAS  Google Scholar 

  • Allen DG, Jewell BR and Murray JW (1974) The contribution of activation processes to the length-tension relation of cardiac muscle. Nature 248: 606-607.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard EM and Solaro RJ (1984) Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circ Res 55: 382-391.

    PubMed  CAS  Google Scholar 

  • Bremel RD and Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nature 238: 97-101.

    CAS  Google Scholar 

  • Cooke R and Franks K (1980) All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemistry 19: 2265-2269.

    Article  PubMed  CAS  Google Scholar 

  • Dong WJ, Wang CK, Gordon AM and Cheung HC (1997) Disparate uorescence properties of 2-[4'-(Iodoacetamido)anilino]-Naphthalene-6-Sulfonic acid attached to Cys-84 and Cys-35 of troponin C in cardiac muscle troponin. Biophys J 72: 850-857.

    PubMed  CAS  Google Scholar 

  • Fitzsimons DP and Moss RL (1998) Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. Circ Res 83: 602-607.

    PubMed  CAS  Google Scholar 

  • Fuchs F and Smith SH (2001) Calcium, cross-bridges, and the Frank-Starling relationship. News Physiol Sci 16: 5-10.

    PubMed  CAS  Google Scholar 

  • Fuchs F and Wang YP (1997) Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor. J Mol Cell Cardiol 29: 3267-3274.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs F, Liou YM and Grabarek Z (1989) The reactivity of sulfhydryl groups of bovine cardiac troponin C. J Biol Chem 264: 20,344-20,349.

    CAS  Google Scholar 

  • Fukuda N, Kajiwara H, Ishiwata S and Kurihara S (2000) Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle. Circ Res 86: e1-e6.

    PubMed  CAS  Google Scholar 

  • Goodo CC (1982) Myosin active site trapping with vanadate ion. Met Enzymol 85B: 116-123.

    Article  Google Scholar 

  • Gordon AM, Homsher E and Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80: 853-924.

    PubMed  CAS  Google Scholar 

  • Hibberd MG and Jewell BR (1982) Calcium-and length-dependentforce produce in ratvent ricular muscle. J Physiol 329: 527-540.

    PubMed  CAS  Google Scholar 

  • Hofmann PA and Fuchs F (1987a) The effect of length and crossbridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol 253: C90-C96.

    PubMed  CAS  Google Scholar 

  • Hofmann PA and Fuchs F (1987b) Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol 253: C541-C546.

    PubMed  CAS  Google Scholar 

  • Hofmann PA and Fuchs F (1988) Bound calcium and force developmentin skinned cardiac muscle: effect of sarcomere length. J Mol Cell Cardiol 20: 667-677.

    Article  PubMed  CAS  Google Scholar 

  • Ingraham RH and Hodges RS (1988) Effects of Ca2+ and subunit interactions on surface accessibility if cysteine residues in cardiac troponin. Biochemistry 27: 5891-5898.

    Article  PubMed  CAS  Google Scholar 

  • Kentish JC, Ter Keurs H, Richardi L, Bucx J and Noble M (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle: influuence of calcium concentrations on these relations. Circ Res 58: 755-768.

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Takagi T, Konishi K, Morimoto S and Ohtsuki I (1989) Amino acid sequence of porcine cardiac muscle troponin C. J Biochem 106: 55-59.

    PubMed  CAS  Google Scholar 

  • Komukai K and Kurihara S (1997) Length dependence of Ca2+-tension relationship in aequorin-injected ferret papillary muscles. Am J Physiol 273: H1068-H1074.

    PubMed  CAS  Google Scholar 

  • Lakatta EG (1987) Starling's law of the heart is explained by an immediate interaction of muscle length and myofilament calcium activation. J Am Cell Cardiol 10: 1157-1164.

    Article  CAS  Google Scholar 

  • Lehrer SS (1994) The regulatory switch of the muscle thin filament: Ca2+ or myosin head? J Muscle Res Cell Motil 15: 232-236.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Love ML, Putkey JA and Cohen C (2000) Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci USA 97: 5140-5145.

    Article  PubMed  CAS  Google Scholar 

  • Liou YM (2001) Effects of sarcomere length and Ca2+ binding on SH reactivity of myofilament bound troponin C in porcine skinned cardiac muscle fibers. J Jpn Physiol 51: 385-388.

    Article  CAS  Google Scholar 

  • Martyn DA and Gordon AM (2001) Influence of length on force and activation-dependent changes in troponin C structure in skinned cardiac and fastskelet al muscle. Biophys J 80: 2798-2808.

    PubMed  CAS  Google Scholar 

  • Martyn DA, Regnier M, Xu D and Gordon AM (2001) Ca2+-and cross-bridge-dependent changes in N-and C-terminal structure of troponin C in rat cardiac muscle. Biophys J 80: 360-370.

    Article  PubMed  CAS  Google Scholar 

  • Maytum R, Lehrer SS and Geeves MA (1999) Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38: 1102-1110.

    Article  PubMed  CAS  Google Scholar 

  • Putkey JA, Liu W, Lin X, Ahmed S, Zhang M, Potter JD and Kerrick WGL (1997) Fluorescence probes attached to Cys 35 or Cys 84 in cardiac troponin C are differentially sensitive to Ca2+-dependent events in vitro and in situ. Biochemistry 36: 970-978.

    Article  PubMed  CAS  Google Scholar 

  • Saeki Y, Kurihara S, Hongo K and Tanaka E (1993) Alterations in intracellular calcium and tension of activated ferret papillary muscle in response to step length changes. J Physiol (Lond) 463: 291-306.

    CAS  Google Scholar 

  • Sia SK, Li MX, Spyracoupoulos L, Gagne SM, Liu W, Putkey JA and Sykes BD (1997) Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 272: 18,216-18,221.

    Article  CAS  Google Scholar 

  • Sippel TO (1981) Microfluorometric analysis of protein thiol groups with coumarinylphenylmaleimide. J Histochem Cytochem 29: 1377-1381.

    PubMed  CAS  Google Scholar 

  • Solaro RJ and Rarick HM (1998) Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 83: 471-480.

    PubMed  CAS  Google Scholar 

  • Solaro RJ and Van Eyk J (1996) Altered interactions among thin filament proteins modulate cardiac function. J Mol Cell Cardiol 28: 217-230.

    Article  PubMed  CAS  Google Scholar 

  • Spyracoupoulos L, Li MX, Sia SK, Gagne SM, Chandra M, Solaro RJ and Sykes BD (1997) Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36: 12,138-12,146.

    Google Scholar 

  • Szynkiewicz J, Stepkowski D, Brzeska H and Drabikowski W (1985) Cardiac troponin-C: a rapid and effective method of purification. FEBS LETT 181: 281-285.

    Article  CAS  Google Scholar 

  • Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58: 447-481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, Y.M., Tseng, Y.C. & Cheng, J.C. Spectrofluorometric analysis of length-dependent conformational changes in cardiac troponin C. J Muscle Res Cell Motil 23, 309–315 (2002). https://doi.org/10.1023/A:1022073815059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022073815059

Keywords

Navigation