Skip to main content
Log in

Bioartificial Liver Support Anno 2001

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Despite maximal intensive care, mortality of acute fulminant hepatic failure is high: 60%–75% in several studies. In addition patients with chronic liver insufficiency suffer from a bad quality of life: all patients suffer from fatigue; symptoms of hepatic encephalopathy, jaundice, and itching are often present. Analogous to artificial kidney treatment in patients with renal failure, an artificial liver assist device is needed not only to bridge patients with fulminant hepatic failure to liver transplantation or own liver regeneration, but also to improve the quality of life of patients with chronic liver insufficiency. Several modalities of artificial liver support are under investigation, like plasma exchange, haemodialysis, haemadsorption, albumin dialysis, liver cell transplantation, and the bioartificial liver. Artificial livers based on only supportive detoxification function do not show significant improvement of survival in controlled studies. Bioartificial liver support systems have also the potential to support hepatic synthetic functions. Bioreactors can be charged with freshly isolated or cryopreserved porcine hepatocytes, but also by human hepatoma cell lines. Several uncontrolled studies in humans show safety of such a treatment, even by using porcine cells. Transmission of porcine endogenous retrovirus to recipients has not been found. Furthermore, beneficial effects have been reported on symptoms of hepatic encephalopathy, on the height of intracranial pressure and on hemodynamic parameters. By using porcine cells immunological problems (e.g., serum sickness) can be expected during treatments longer than one week. However, “proof of the pudding” in the sense of improvement of survival is not yet available. The creation of a “liver dialysis unit” in the near future depends mainly on the development of well-differentiated immortalized human hepatocytes. Some progress in this field has already been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ash, S.R., Blake, D.E., et al. (1992). Clinical effects of a sorbent suspension dialysis system in treatment of hepatic coma (the Biologic DT). Int. J. Artif. Organs 15:151-161.

    Google Scholar 

  • Baquerizo, A., Mhoyan, A., Shirwan, A., et al. (1997). Xenobody response of patients with severe acute liver failure exposed to porcine antigens following treatment with a bioartificial liver. Transpl. Proc. 29:964-965.

    Google Scholar 

  • Chamuleau, R.A.F.M. (1979). Treatment of acute hepatic encephalopathy. Neth. J. Med. 22:203-209.

    Google Scholar 

  • Dixit, V.G.G. (1998). The bioartificial liver: State of the art. Eur. J. Surg. (Suppl. 582):71-76.

  • Dixit,V., and Gitnick, G. (1995). Transplantation of microencapsulated hepatocytes for liver function replacement. J. Biomater. Sci. Polym. Ed. 7:343-357.

    Google Scholar 

  • Donini, A., Baccarani, U., Lavaroni, S., Cautero, N., and Degrassi, A. (2000).Temporary neurological improvement after bioartificial liver treatment for acut on chronic failure. ASAIO J. 46:241.

    Google Scholar 

  • Ellis, A.J., Hughes, R.D., Wendon, J.A., Dunne, J., Langley, P.G., Kelly, J.H., et al. (1996). Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 24:1446-1451.

    Google Scholar 

  • Flendrig, L.M., La Soe, J.W., Jörning, G.G., Steenbeek, A., Karlsen, O.T., Bovée, W.M.M.J., et al. (1997). In vitro evaluation of a novel bioreactor based on an integral oxygenator and a spirally wound non-woven polyester matrix for hepatocyte culture as small aggregates. J. Hepatol. 26:1379-1392.

    Google Scholar 

  • Flendrig, L.M., Chamuleau, R.A.F.M., Maas, M.A.W., et al. (1999a). In vivo evaluation of a novel bioartificial liver in rats with complete liver ischemia: Treatment efficacy and species-specific alpha GST as a first attempt to monitor hepatocyte viability. J. Hepatol. 30:311-320.

    Google Scholar 

  • Flendrig, L.M., Calise, F., Di Florio, E., Mancini, M., et al. (1999b). Significant improvement of survival time in pigs with complete liver ischemia treated with a novel bioartificial liver. Int. J. Artif. Organs 22:701-709.

    Google Scholar 

  • Gerlach, J.C. (1996). Development of a hybrid liver support system: A review. Int. J. Artif. Organs 19:645-654.

    Google Scholar 

  • Jauregui, H.O., Mullon, C.J.-P., Trenkler, D., Naik, S., Santangini, H., Press, P. et al. (1995). In vivo evaluation of a hollow fiber liver assist device. Hepatology 21:460-469.

    Google Scholar 

  • Kardassis, D., Busse, B., Kraemer, M.R., Smith, M.D., Neuhaus, P., and Gerlach, J.C. (1999). Hemodynamic effects of therapy with a hybrid liver support system. ASAIO J. 45:201.

    Google Scholar 

  • Kelly, J.H., Koussayer, T., He, D., and Sussman, N.L. (1992). Assessment of an extracorporeal liver assist device in anhepatic dogs. Artif. Organs 16:418-423.

    Google Scholar 

  • Kobayashi, N., Fujiwara, T., Westerman, K., Inoue, Y., Sakaguchi, M., Noguchi, H., et al. (2000). Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287:1258-1262.

    Google Scholar 

  • Kubota, H., and Reid, L.M. (2000). Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc. Natl. Acad. Sci. U.S.A. 97:12132-12137.

    Google Scholar 

  • Mazariegos, G.V., Kramer, D.J., Lopez, R.C., et al. (2001). Safety observations in Phase I clinical evaluation of the Excorp medical bioartificial liver support system after the first four patients. ASAIO J. 47:471-475.

    Google Scholar 

  • Morimoto, T., Matsushima, M., Sowa, N., Ide, K., and Sawanishi, K. (1989). Plasma adsorption using bilirubin adsorbent materials as a treatment for patients with hepatic failure. Artif. Organs 13:447-452.

    Google Scholar 

  • Naruse, K., Nagashima, I., Sakai, Y., Harihara, Y., Jiang, G.X., Suzuki, M., et al. (1998). Efficacy of a bioreactor filled with porcine hepatocytes immobilized on nonwoven fabric for ex vivo direct hemoperfusion treatment of liver failure in pigs. Artif. Organs 22:1031-1037.

    Google Scholar 

  • Nyberg, S.L., and Shatford, R.A. (1993). Evaluation of a hepatocyte-entrapment hollowfiber bioreactor:Apotential bioartificial liver. Biotechnol. Bioeng. 41:194-203.

    Google Scholar 

  • Nyberg, S.L., Hibbs, J.R., Hardin, J.A., Germer, J.J., and Persing, D.H. (1999). Transfer of porcine endogenous retroviruses across hollow fiber membranes. Transplantation 67:1251-1255.

    Google Scholar 

  • O'Grady, J.G., Gimson, A.E., O'Brien, C.J., et al. (1988). Controlled trials of charcoal hemoperfusion and prognostic factors in fulminant hepatic failure. Gastroenterology 94:1186-1192.

    Google Scholar 

  • Patience, C., Takeuchi, Y., and Weiss, R.B. (1997). Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3:282-286.

    Google Scholar 

  • Paradis, K., Langford, G., Long, Z., et al. (1999). Search for cross-species transmission of porcine endogenous retrovirus in patients with living pig tissue. Science 285:1236-1241.

    Google Scholar 

  • Pazzi, P., Morsiani, E., Muraca, M., Vilei, M.T., Rozga, J., and Demetriou, A.A. (1997). Metabolic characterization of bioartificial liver: Focus on bile production and excretion. In: Crepaldi, G., Demetriou, A.A., and Muraca, M. (eds.), Bioartificial Liver Support Systems. The Critical Issues, CIC Edizioni Internationali, Rome, pp. 42-47.

    Google Scholar 

  • Riordan, S.M., and Williams, R. (2000). Acute liver failure: Targeted artificial and hepatocyte-based support of liver regeneration and reversal of multiorgan failure [Review]. J. Hepatol. 32(Suppl. 1):63-76.

    Google Scholar 

  • Rozga, J., Holzman, M.D., Ro, M.-S., Griffin, D.W., Neuzil, D.F., Giorgio, T., et al. (1993). Development of a hybrid bioartificial liver. Ann. Surg. 217:502-515.

    Google Scholar 

  • Sarkis, R., Wen, L., Honiger, J., et al. (1998). Intraperitoneal transplantation of isolated hepatocytes of the pig: The implantable bioartificial liver. Chirurgie 123:41-46.

    Google Scholar 

  • Sheil, A.G.R., Sun, J., Mears, D.C., Waring, M., Woodman, K., Johnston, B., et al. (1998). Positive biochemical effects of a bioartificial liver support system (BALSS) in a porcine fulminant hepatic failure (FHF) model. Int. J. Artif. Organs 21:43-48.

    Google Scholar 

  • Sielaff, T.D., Hu, M.Y., Amiot, B., Rollins, M.D., Rao, S., McGuire, B., et al. (1995). Gel-entrapment bioartificial liver therapy in galactosamine hepatitis. J. Surg. Res. 59:179-184.

    Google Scholar 

  • Sosef, M.N., Abrahamse, L.S.L., van de Kerkhove, M.-P., Hartman, R., Chamuleau, R.A.F.M., and van Gulik, T.M. (in press). Assessment of the AMC-Bioartificial liver in the anhepatic pig. Transplantation.

  • Stange, J., Mitzner, S.R., Risler, T., Erley, C.M., Lauchart,W., Goehl, H., et al. (1999). Molecular adsorbent recycling system (MARS): Clinical results of a new membrane-based blood purification system for bioartificial liver support. Artif. Organs 23:319-330.

    Google Scholar 

  • Sussman, N.L. (1996). Fulminant hepatic failure. In: Zakim, D., and Boyer, T.D. (eds.), Hepatology, a Textbook of Liver Disease (3rd Ed.), W.B. Saunders, Philadelphia, pp. 618-650.

    Google Scholar 

  • Sussman, N.L., Gislason, G.T., and Kelly, J.H. (1994). Extracorporeal liver support. Application to fulminant hepatic failure. J. Clin. Gastroenterol. 18:320-324.

    Google Scholar 

  • TeVelde, A.A., Flendrig, L.M., Ladiges, N.C.J.J., and Chamuleau, R.A.F.M. (1997). Possible immunological problems of bioartificial liver support. Int. J. Artif. Organs 20:418-421.

    Google Scholar 

  • Tygstrup, N., Larson, F., and Hanson, B. (1997). Treatment of acute liver failure by high volume plasmapheresis. In: Lee, W., and Williams, R. (eds.), Acute Liver Failure, Cambridge University Press, Cambridge, pp. 267-277.

    Google Scholar 

  • Uchino, J., Tsuburya, T., Kumagai, F., Hase, T., Hamada, T., Komai, T., et al. (1988). A hybrid artificial liver composed of multiplated hepatocyte monolayers. ASAIO Trans. 34:972-977.

    Google Scholar 

  • Van de Kerkhove, M.-P., Di Florio, E., Scuderi, V., Mancini, A., Belli, A., Scala, D., et al. (submitted). Successful bridging of a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Transplantation.

  • Watanabe, F.D., Mullon, C.J.P., Hewitt, W.R., et al. (1997). Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann. Surg. 225:484-494.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamuleau, R.A.F.M. Bioartificial Liver Support Anno 2001. Metab Brain Dis 17, 485–491 (2002). https://doi.org/10.1023/A:1021990725508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021990725508

Navigation