Skip to main content
Log in

Activationless Reduction of the Hexacyanoferrate Anion on a Mercury Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Polarization curves for the electroreduction of [Fe(CN)6]3– on a mercury electrode in solutions containing different amounts of surface-inactive supporting cations are simulated on the basis of modern theory of charge transfer in polar media combined with quantum-chemical approaches. The conclusions about an activationless nature of the process in the overvoltage range 1.2 to 2.0 V accessible experimentally, which were drawn from the results of earlier calculations made within simpler models, are confirmed. The maximum contribution to the current is shown to be made by energy levels of metal that lie considerably (up to 1 eV) lower than the Fermi level. To establish the reasons for the anomalous behavior of the current in the activationless region at high overvoltages, the effect various factors sensitive to the electrode charge exert on the model curves at high negative charges of the electrode surface is analyzed. In connection with this, the stability of the results of a calculation of the electron overlap metal/reactant to a model of the interface is considered. The plausibility of the model proposed for the reaction layer and the approaches used for computing the activation energy and the preexponential factor is corroborated by good agreement between the temperature effect found for the region of a minimum current and its experimental value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Frumkin, A.N. and Florianovich, G.M., Dokl. Akad. Nauk SSSR, 1951, vol. 80, p. 907; Zh. Fiz. Khim., 1955, vol. 29, p. 1955.

    Google Scholar 

  2. Frumkin, A.N. and Nikolaeva-Fedorovich, N.V., Vestn. Mosk. Univ., Ser.: Mat., Mekh., Astron., Fiz., Khim., 1957, no. 4, p. 169.

    Google Scholar 

  3. Frumkin, A.N., Petrii, O.A., and Nikolaeva-Fedorovich, N.V., Dokl. Akad. Nauk SSSR, 1959, vol. 128, p. 1006.

    Google Scholar 

  4. Petrii, O.A. and Nikolaeva-Fedorovich, N.V., Zh. Fiz. Khim., 1961, vol. 35, p. 1999.

    Google Scholar 

  5. Frumkin, A.N. and Petrii, O.A., Dokl. Akad. Nauk SSSR, 1962, vol. 147, p. 418.

    Google Scholar 

  6. Petrii, O.A. and Frumkin, A., Dokl. Akad. Nauk SSSR, 1962, vol. 146, p. 1121.

    Google Scholar 

  7. Frumkin, A.N., Petrii, O.A., and Nikolaeva-Fedorovich, N.V., Dokl. Akad. Nauk SSSR, 1962, vol. 147, p. 878.

    Google Scholar 

  8. Nikolaeva-Fedorovich, N.V., Petrii, O.A., Damaskin, B.B., and Furazhkova, G.A., Vestn. Mosk. Univ., Ser. 2: Khim., 1962, vol. 17, p. 40.

    Google Scholar 

  9. Nikolaeva-Fedorovich, N.V., Rybakov, B.N., and Radyushkina, K.A., Elektrokhimiya, 1967, vol. 3, p. 1086.

    Google Scholar 

  10. Nikolaeva-Fedorovich, N.V., Yakovleva-Stenina, E.V., and Rybalka, K.V., Elektrokhimiya, 1967, vol. 3, p. 1502.

    Google Scholar 

  11. Bieman, D.J. and Fawcett, W.R., J. Electroanal. Chem., 1972, vol. 34, p. 27.

    Google Scholar 

  12. Dogonadze, R.R. and Kuznetsov, A.M., Itogi Nauki, Ser.: Elektrokhimiya, 1969, vol. 5, p. 77.

    Google Scholar 

  13. Tsirlina, G.A., Kuznetsov, A.M., Petrii, O.A., and Kharkats, Yu.I., Elektrokhimiya, 1999, vol. 35, p. 938.

    Google Scholar 

  14. Titova, N.V., Tsirlina, G.A., Nazmutdinov, R.R., and Petrii, O.A., Elektrokhimiya, 2001, vol. 37, p. 21.

    Google Scholar 

  15. Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2002, vol. 38, p. 812.

    Google Scholar 

  16. Fawcett, W.R., Hromadova, M., Tsirlina, G.A., and Nazmutdinov, R.R.,J. Electroanal. Chem., 2001, vol. 498, p. 93.

    Google Scholar 

  17. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 94: Revision D.1, Pittsburgh: Gaussian, Inc., 1995; Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 98: Revision A.3, Pittsburgh: Gaussian, Inc., 1998.

    Google Scholar 

  18. Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika: Nerelyativistskaya teoriya (Quantum Mechanics: Nonrelativistic Theory), Moscow: Nauka, 1974.

    Google Scholar 

  19. Kuznetsov, A.M., Charge Transfer in Physics, Chemistry, and Biology, Berkshire: Gordon and Breach, 1995.

    Google Scholar 

  20. Ashcroft, N.W. and Mermin, N.D., Solid State Physics, New York: Holt, Renehart, and Winston, 1976, vol. 1.

    Google Scholar 

  21. Lundquist, S., Surface Science, Vienna: Int. Atomic Energy Agency, 1975, vol. 1, p. 331.

    Google Scholar 

  22. Bennet, A.J. and Falicov, L.M., Phys. Rev., 1966, vol. 151, p. 512.

    Google Scholar 

  23. Smith, J.R., in Interactions on Metal Surfaces, Gomer, R., Ed., Berlin: Springer, 1975, p. 1.

    Google Scholar 

  24. Dzhavakhidze, P.G., Kornyshev, A.A., and Tsitsuashvili, G.I., Solid State Commun., 1984, vol. 52, p. 401.

    Google Scholar 

  25. Lehman, G. and Ziesche, P., Electronic Properties of Metals, Amsterdam: Elsevier, 1990.

    Google Scholar 

  26. Kornyshev, A.A., Kuznetsov, A.M., and Ulstrup, J., J. Phys. Chem., 1994, vol.98, p. 3832.

    Google Scholar 

  27. Kornyshev, A.A., Kuznetsov, A.M., Nielsen, J.U., and Ulstrup, J., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 141.

    Google Scholar 

  28. Gosavi, S., Gao, Y., and Marcus, R.A., J. Electroanal. Chem., 2001, vol. 500, p. 71.

    Google Scholar 

  29. Levine, I.N., Quantum Chemistry, Englewood Cliffs (NJ): Prentice-Hall, 1991.

    Google Scholar 

  30. Breneman, C.M. and Wiberg, K.B., J. Comput. Chem., 1990, vol. 11, p. 361.

    Google Scholar 

  31. Kharkats, Yu.I., Nielsen, H., and Ulstrup, J., J. Electroanal. Chem., 1984, vol. 169, p. 47.

    Google Scholar 

  32. Tsirlina, G.A., Petrii, O.A., Nazmutdinov, R.R., and Glukhov, D.V., Elektrokhimiya, 2002, vol. 38, p. 154.

    Google Scholar 

  33. Memming, R. and Möllers, F., Ber. Bunsen-Ges. Phys. Chem., 1972, vol. 76, p. 475.

    Google Scholar 

  34. Tsirlina, G.A., Kharkats, Yu.I., Nazmutdinov, R.R., and Petrii, O.A., Elektrokhimiya, 1999, vol. 35, p. 23.

    Google Scholar 

  35. Baltrushat, H., Lu, F., Song, D., et al.,J. Electroanal. Chem., 1987, vol. 234, p. 229.

    Google Scholar 

  36. CRC Handbook of Chemistry and Physics, New York: CRC, 1996-1997, section 6.

  37. Nazmutdinov, R.R., Probst, M., and Heinzinger, K., J. Electroanal. Chem., 1994, vol. 369, p. 227.

    Google Scholar 

  38. Gavaghan, D.J. and Feldberg, S.W., J. Electroanal. Chem., 2000, vol. 491, p. 103.

    Google Scholar 

  39. Dogonadze, R.R., Ulstrup, J., and Kharkats, Yu.I.,J. Electroanal. Chem., 1972, vol. 39, p. 47; 1973, vol. 43, p. 161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A. et al. Activationless Reduction of the Hexacyanoferrate Anion on a Mercury Electrode. Russian Journal of Electrochemistry 39, 97–108 (2003). https://doi.org/10.1023/A:1021975815384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021975815384

Keywords

Navigation