Skip to main content
Log in

Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The electrochemical impedance is measured to study the capacitance of the double electrical layer of metallic Au, Ag, and Cu as a function of potential and temperature in nine molten salts, namely, the chlorides, bromides, and iodides of sodium, potassium, and cesium. The CE curve of a gold electrode has an additional minimum in the anodic branch. This minimum for silver is less pronounced and is only observed at low ac signal frequencies in cesium halides. The additional minimum is not detected for copper in any salt under study. This phenomenon is explained on the assumption that the adsorption of halide anions on a positively charged electrode surface has a predominantly chemical rather than an electrostatic character. The specific adsorption in this case is accompanied by charge transfer through the interface and the formation of an adsorbent–adsorbate covalent bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Ukshe, N. G. Bukun, D. I. Leikis, and A. N. Frumkin, “Investigation of the electric double layer in salt melt,” Electrochim. Acta 9 (4), 431–439 (1964).

    Article  Google Scholar 

  2. E. A. Ukshe and N. G. Bukun, “The electrical double layer in molten halides,” J. Electroanal. Chem. 32 (2), 283–291 (1971).

    Article  Google Scholar 

  3. A. D. Graves, “The electrical double layer in molten salts: Part 1. The potential of zero charge,” J. Electroanal. Chem. 25 (3), 349–356 (1970).

    Article  Google Scholar 

  4. A. D. Graves and D. J. Inman, “The electrical double layer in molten salts: Part 2. The double-layer capacitance,” J. Electroanal. Chem. 25 (3), 357–372 (1970).

    Article  Google Scholar 

  5. N. K. Tumanova and Y. K. Delimarskii, “Adsorption of organic substances and double-layer structure at the solid electrode–molten salt interface,” Electrochim. Acta 26 (12), 1737–1741 (1981).

    Article  Google Scholar 

  6. Y. K. Delimarsky and N. K. Tumanova, “A study of the effect of surfactants on electrode processes in molten salts,” Electrochim. Acta 24 (1), 19–24 (1979).

    Article  Google Scholar 

  7. S. I. Dokashenko and V. P. Stepanov, “Structure of the double electrical layer on liquid metallic electrodes in individual alkali metal halide melts,” Elektrokhimiya 29 (11), 1301–1305 (1993).

    Google Scholar 

  8. R. R. Dogonadze and Yu. A. Chizmadzhev, “Structure and capacitance of the metal–molten slat interface,” Dokl. Akad. Nauk SSSR 157 (4), 944–947 (1964).

    Google Scholar 

  9. A. I. Sotnikov and O. A. Esin, “Alternating structure of the double electrical layer in molten salts,” in Proceedings of the 3rd All-Union Conference on Physical Chemistry and Electrochemistry of Melts, Salts, and Slags (Khimiya, Leningrad, 1968), pp. 209–214.

    Google Scholar 

  10. V. Lockett, R. Sedev, J. Ralston, T. Rodopoulos, and M. Horne, “Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: influence of potential, cation size, and temperature,” J. Phys. Chem. 112 (19), 7486–7495 (2008).

    Google Scholar 

  11. M. T. Alam, M. M. Islam, T. Okajima, and T. Ohsaka, “Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces,” Electrochem. Commun. 9, 2370–2374 (2007).

    Article  Google Scholar 

  12. M. M. Islam, M. T. Alam, and T. Ohsaka, “Electrical double-layer structure in ionic liquids: a corroboration of the theoretical model by experimental results,” J. Phys. Chem. C 112, 16568–16574 (2008).

    Article  Google Scholar 

  13. S. Baldelli, “Probing electric fields at the ionic liquid–electrode interface using sum frequency generation spectroscopy and electrochemistry,” J. Phys. Chem. B 109, 13049–13051 (2005).

    Article  Google Scholar 

  14. V. Lockett, M. Horne, R. Sedev, T. Rodopoulos, and J. Ralston, “Differential capacitance of the double layer at the electrode/ionic liquids interface,” Phys. Chem. Chem. Phys. 12, 12499–12512 (2010).

    Article  Google Scholar 

  15. A. A. Kornyshev, “Double-layer in ionic liquids: paradigm change,” J. Phys. Chem. B 111 (20), 5545–5557 (2007).

    Article  Google Scholar 

  16. M. V. Fedorov and A. A. Kornyshev, “Ionic liquid near a charged wall: structure and capacitance of electrical double layer,” J. Phys. Chem. B 112, 11868–11872 (2008).

    Article  Google Scholar 

  17. M. V. Fedorov, N. Georgi, and A. A. Kornyshev, “Double layer in ionic liquids: the nature of the camel shape of capacitance,” Electrochem. Commun. 12, 296–299 (2010).

    Article  Google Scholar 

  18. S. Lamperski, C. W. Outhwaite, and L. B. Bhuiyan, “The electric double-layer differential capacitance at and near zero surface charge for a restricted primitive model electrolyte,” J. Phys. Chem. B 113, 8925–8929 (2009).

    Article  Google Scholar 

  19. S. Lamperski and J. Kłos, “Grand canonical Monte Carlo investigations of electrical double layer in molten salts,” J. Chem. Phys. 129, 164–503 (2008).

    Article  Google Scholar 

  20. N. Georgi, A. A. Kornyshev, and M. V. Fedorov, “The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: Electrostriction vs. lattice saturation,” J. Electroanal. Chem. 649, 261–267 (2010).

    Article  Google Scholar 

  21. M. A. V. Devanathan and B. V. K. S. R. A. Tilak, “The structure of the electrical double layer at the metalsolution interface,” Chem. Rev. 65 (6), 635–684 (1965).

    Article  Google Scholar 

  22. G. J. Hills and K. E. Johnson, “Impedance phenomena in molten salts,” J. Electrochem. Soc. 108 (11), 1013–1018 (1961).

    Article  Google Scholar 

  23. A. D. Graves and D. Inman, “Adsorption and the differential capacitance of the electrical double-layer at platinum/halide metal interfaces,” Nature 208, 481–482 (1965).

    Article  Google Scholar 

  24. E. A. Ukshe and N. G. Bukun, “Double electrical layer and zero points in ionic melts,” in Rastvory. Rasplavy (VINITI, Moscow, 1975), pp. 140–171.

    Google Scholar 

  25. N. G. Bukun and R. A. Alekseeva, “Capacitance of the double electrical layer in a chloride melt,” Elektrokhimiya 11 (11), 1738–1741 (1975).

    Google Scholar 

  26. M. V. Smirnov, V. I. Minchenko, and V. P. Stepanov, “Adiabatic and isothermal compressibilities of molten alkali halides and their mixtures,” Silicat. Industry 41 (3), 113–121 (1976).

    Google Scholar 

  27. D. C. Grahame and R. B. Whitney, “The thermodynamic theory of electrocapillarity,” J. Am. Chem. Soc. 64, 1548–1552 (1942).

    Article  Google Scholar 

  28. C. A. Melendres and F. Hahn, “In situ observation of halide ion adsorption on a gold electrode using synchrotron far infrared spectroscopy,” J. Electroanal. Chem. 463, 258–261 (1999).

    Article  Google Scholar 

  29. Ping Gao and M. J. Weaver, “Metal-adsorbate vibrational frequencies as a probe of surface bonding: halides and pseudohalides at gold electrodes,” J. Phys. Chem. 90, 4057–4063 (1986).

    Article  Google Scholar 

  30. F. Reniers, D. H. Fairbrother, S. Wu, and J. Lipkowski, Surf. Sci. 433–435, 12–16 (1999).

    Article  Google Scholar 

  31. R. Puddephatt, Chemistry of Gold (Elsevier, Amsterdam, 1978).

    Google Scholar 

  32. B. H. Loo, “In situ identification of halide complexes on gold electrode by surface-enhanced Raman spectroscopy,” J. Phys. Chem. 86 (4), 433–437 (1982).

    Article  Google Scholar 

  33. O. L. Semerikova, N. A. Saltykova, N. O. Esina, and A. N. Baraboshkin, “Anodic dissolution of gold in anodic melts,” in Proceedings of Conference on the VIII Kol’sk Seminar on Electrochemistry of Rare Metals (Apatity, 1995), p. 68.

    Google Scholar 

  34. A. Cuesta and D. M. Kolb, “The structure of bromide and chloride adlayers on Au(100) electrodes: an in situ STM study,” Surf. Sci. 465, 310–316 (2000).

    Article  Google Scholar 

  35. O. M. Magnussen, B. M. Ocko, R. R. Adzic, and J. X. Wang, “X-ray diffraction studies of ordered chloride and bromide monolayers at the Au(111)-solution interface,” Phys. Rev. B 51 (8), 5510–5513 (1995).

    Article  Google Scholar 

  36. Z. Kerner and T. Pajkossy, “Measurement of adsorption rates of anions on Au(111) electrodes by impedance spectroscopy,” Electrochim. Acta. 47, 2055–2063 (2002).

    Article  Google Scholar 

  37. P. Braunstein and R. J. H. Clark, “The preparation, properties, and vibrational spectra of complexes containing the AuCl2 -, AuBr2 - and AuI2 ions,” J. Chem. Soc. Dalton Trans., 1845–1848 (1973).

    Google Scholar 

  38. E. Husson, N. Q. Dao, and D. K. Breitinger, “Vibrational spectra and normal coordinate analyses of the gold halides AuX (X = Cl, Br, and I),” Spectrochim. Acta Part A 37, 1087–1092 (1981).

    Article  Google Scholar 

  39. B. V. Nekrasov, Fundamentals of General Chemistry (Khimiya, Moscow, 1974).

    Google Scholar 

  40. G. A. Bowmaker and R. Whiting, “Bonding in d10 transition metal complexes. IV. Infrared, Raman and N.Q.R. studies of some dihaloaurate(I) complexes,” Aust. J. Chem. 29, 1407–1412 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kirillova.

Additional information

Original Russian Text © E.V. Kirillova, V.P. Stepanov, 2015, published in Rasplavy, 2015, No. 5, pp. 39–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillova, E.V., Stepanov, V.P. Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides. Russ. Metall. 2016, 691–697 (2016). https://doi.org/10.1134/S0036029516020051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516020051

Navigation