Skip to main content
Log in

In Vivo Approach to the Cellular Mechanisms for Sensory Processing in Sleep and Wakefulness

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The present review analyzes sensory processing during sleep and wakefulness from a single neuronal viewpoint. Our premises are that processing changes throughout the sleep–wakefulness cycle may be at least partially evidenced in single neurons by (a) changes in the phase locking of the response to the hippocampal theta rhythm, (b) changes in the discharge rate and firing pattern of the response to sound, and (c) changes in the effects of the neurotransmitters involved in the afferent and efferent pathways.

2. The first part of our report is based on the hypothesis that the encoding of sensory information needs a timer in order to be processed and stored, and that the hippocampal theta rhythm could contribute to the temporal organization. We have demonstrated that the guinea pig's auditory and visual neuronal discharge exhibits a temporal relationship (phase locking) to the hippocampal theta waves during wakefulness and sleep phases.

3. The concept that the neural network organization during sleep versus wakefulness is different and can be modulated by sensory signals and vice versa, and that the sensory input may be influenced by the CNS state, i.e., asleep or awake, is introduced. During sleep the evoked firing of auditory units increases, decreases, or remains similar to that observed during quiet wakefulness. However, there has been no auditory unit yet that stops firing as the guinea pig enters sleep. Approximately half of the cortical neurons studied did not change firing rate when passing into sleep while others increased or decreased. Thus, the system is continuously aware of the environment. We postulate that those neurons that changed their evoked firing during sleep are also related to still unknown sleep processes.

4. Excitatory amino acid neurotransmitters participate in the synaptic transmission of the afferent and efferent pathways in the auditory system. In the inferior colliculus, however, the effects of glutamate's mediating the response to sound and the efferent excitation evoked by cortical stimulation failed to show differences in sleep and wakefulness.

5. Considering that neonates and also infants spend most of the time asleep, the continuous arrival of sensory information to the brain during both sleep phases may serve to “sculpt” the brain by activity-dependent mechanisms of neural development, as has been postulated for wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bşsar, E., Schurmann, M., and Sakowitz, O. (2001). The selectively distributed theta system: Functions. Int. J. Psychophysiol. 39:197–212.

    Google Scholar 

  • Best, J., White, A. M., and Minai, A. (2001). Spatial processing in the brain: The activity of hippocampal place cells. Annu. Rev. Neurosci. 24:459–486.

    Google Scholar 

  • Brandenberger, G. (1993). Episodic hormone release in relation to REM sleep. J. Sleep Res. 2:193–198.

    Google Scholar 

  • Bremer, F. (1935). Cerveau “isole” et physiologie du sommeil. C. R. Soc. Biol. 118:1235–1241.

    Google Scholar 

  • Buño, W., and Velluti, J. C. (1977). Relationship of hippocampal theta cycle with bar pressing during self-stimulation. Physiol. Behav. 19:615–621.

    Google Scholar 

  • Brown, M. W., and Aggleton, J. P. (2001). Recognition memory: What are roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2:51–61.

    Google Scholar 

  • Burger, M. B., and Pollak, G. D. (1998). Analysis of the role of inhibition in shaping responses to sinusoidally amplitude-modulated signals in the inferior colliculus. J. Neurophysiol. 80:1686–701.

    Google Scholar 

  • Cazard, P., and Buser, P. (1963). EsModification des r ésponses sensorielles corticales par stimulation de l'hippocampe dorsal chez le lapin. Electroenceph. Clin. Neurophysiol. 15:413–425.

    Google Scholar 

  • Cheour, M., Martynova, O., Naatanen, R., Erkkola, R., Sillanpaa, M., Kero, P., Raz, A., Kaipio, M.-L., Hiltunen, J., Aaltonen, O., Savela, J., and Hamalainen, H. (2002). Speech sounds learned by sleeping newborns. Nature 415:599–600.

    Google Scholar 

  • Curtis, D. R., and Koizumi, K. (1961). Chemical transmitter substances in the brain stem of the cat. J. Neurophysiol. 24:80–90.

    Google Scholar 

  • Cutrera, R., Pedemonte, M., Vanini, G., Goldstein, N., Savorini, D., Cardinali, D. P., and Velluti, R. A. (2000). Auditory deprivation modifies biological rhythms in the golden hamster. Arch. Ital. Biol. 138:285–293.

    Google Scholar 

  • Dana, C. L. (1916). Morbid somnolence and its relation to the endocrine glands. N. Y. Med. J. Med. Rec. 89:1–5.

    Google Scholar 

  • Edeline, J. M., Dutrieux, G., Manunta, G., and Hennevin, E. (2001) Diversity of receptive field changes in auditory cortex during natural sleep. Eur. J. Neurosci. 14:1865–1880.

    Google Scholar 

  • Faingold, C. L., Gehlbach, G., and Caspary, D. M. (1991). Functional pharmacology of inferior colliculus neurons. In Altschuler, R. A., Bobbin, R. P., Clopton, B. M., and Hoffman, D.W. (eds.), Neurobiology of Hearing: The Central Auditory System, Raven Press, New York, pp. 223–251.

    Google Scholar 

  • Feldman, D. E., and Knudsen, E. I. (1994). NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus. J. Neurosci. 4:5939–5958.

    Google Scholar 

  • Feliciano, M., and Potashner, S. (1995). Evidence for a glutamatergic pathway from the guinea-pig auditory cortex to the inferior colliculus. J. Neurochem. 65:1348–1357.

    Google Scholar 

  • Franzini, C. (1992). Brain metabolism and blood flow during sleep. J. Sleep Res. 1:3–36.

    Google Scholar 

  • Fitzpatrick, K. A., and Imig, T. A. (1978). Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J. Comp. Neurol. 177:537–556.

    Google Scholar 

  • Fuentes J., Buño W., and García-Austt, E. (1981). Simulation of post-synaptic activities in hippocampal cells during theta rhythm. Brain Res. Bull. 7:157–162.

    Google Scholar 

  • Gambini, J. P., Pedemonte, M., and Velluti, R. A. (1999). Sleep–wakefulness modulation of lateral geniculate visual information: Unitary study and hippocampal theta phase-locking. Sleep Res. Online. 2(Suppl.1):99.

    Google Scholar 

  • Gambini, J. P., Velluti, R. A., and Pedemonte, M. (2002). Hippocampal theta rhythm synchronized visual neurons in sleep and waking. Brain Res. 926:137–141.

    Google Scholar 

  • García-Austt, E. (1984). Hippocampal level of neural integration. In Ajmone-Marsan, E., and Reinoso-Suárez, F. (eds.), Cortical Integration. Basic Archicortical and Cortical Association Levels of Neuronal Integrations, Raven Press, New York, pp. 91–104.

    Google Scholar 

  • Gaztelu, J. M., Romero-Vives, M., Abraira, V., and García-Austt, E. (1994). Hippocampal EEG theta power density is similar during slow-wave sleep and paradoxical sleep. A long-term study in rats. Neurosci. Lett. 172:31–34.

    Google Scholar 

  • Goldstein-Daruech, N., Pedemonte, M., Inderkum, A., and Velluti, R.A. (2002). Effects of excitatory amino acid antagonists on the activity of inferior colliculus neurons during sleep and wakefulness. Hearing Res. 168:35–41.

    Google Scholar 

  • Green, J. D., and Arduini, A. A. (1954). Hippocampal electrical activity in arousal. J. Neurophysiol. 17:403–420.

    Google Scholar 

  • Greenberg, J. H. (1980). Sleep and cerebral circulation. In Orem, J., and Barnes, Ch.D. (eds.), Physiology in Sleep, Academic Press, New York, pp. 57–94.

    Google Scholar 

  • Jen, P. H., Sun, X., and Chen, Q. C. (2001). An electrophysiological study of central pathways for corticofugally inhibited neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus. Exp. Brain Res. 137:292–302.

    Google Scholar 

  • Kocsis, B., and Vertes, R. P. (1992). Dorsal raphe neurons: Synchronous discharge with theta rhythm of the hippocampus in the freely behaving rat. J. Neurophysiol. 68:1463–1467.

    Google Scholar 

  • Komisariuk, B. (1970). Synchrony between limbic system theta activity and rhythmical behaviour in rats. J. Comp. Physiol. Psychol. 10:482–492.

    Google Scholar 

  • Lerma, J., and García-Austt, E. (1985). Hippocampal theta rhythm during paradoxical sleep: Effects of afferent stimuli and phase-relationships with phasic events. Electroenceph. Clin. Neurophysiol. 60:46–54.

    Google Scholar 

  • Lidyc, R., Baghdoyan, H. A., Hibbard, L., Bonyak, E.V., DeJoseph, M. R., and Hawkins, R.A. (1991). Regional brain glucose metabolism is altered during rapid eye movement sleep in the cat:Apreliminary study. J. Comp. Neurol. 304:517–529.

    Google Scholar 

  • Livingstone, M. S., and Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554–561.

    Google Scholar 

  • Marks, G. A., Shaffery, J. P., Oksenberg, A., Speciale, S. G., and Roffwarg, H. P. (1995). A functional role for REM sleep in brain maturation. Behav. Brain Res. 69:1–11.

    Google Scholar 

  • McCarley, R.W., and Hoffman, E. A. (1981). REM sleep dreams and the activation–synthesis hypothesis. Am. J. Psychiatry l38:904–912.

    Google Scholar 

  • McCarley, R., Benoit, O., and Barrionuevo, G. (1983). Lateral geniculate nucleus unitary discharge in sleep and waking: State-and rate-specific aspects. J. Neurophysiol. 50:798–817.

    Google Scholar 

  • Mitani, A., Shimokouchi, M., and Nomura, S. (1983). Effects of stimulation of the primary auditory cortex upon colliculo-geniculate neurons in the inferior colliculus of the cat. Neurosci. Lett. 42:185–189.

    Google Scholar 

  • Morales-Cobas, G., Ferreira, M. I., and Velluti, R. A., (1995). Sleep and waking firing of inferior colliculus neurons in response to low frequency sound stimulation. J. Sleep Res. 4:242–251.

    Google Scholar 

  • Moruzzi, G. (1972). The sleep–waking cycle. FrErgebnisse der Physiologie 64:1–165.

    Google Scholar 

  • O'Keefe, J., and Recce, M. L. (1993). Phase relationship between hippocampal place units and EEG theta rhythm. Hippocampus 3:317–330.

    Google Scholar 

  • O'Keefe, J., and Burgess, N. (1999). Theta activity, virtual navigation and the human hippocampus. Trends Cognit. Sci. 3:403–406.

    Google Scholar 

  • Parmeggiani, P. L., and Rapisarda, C. (1969). Hippocampal output and sensory mechanisms. Brain Res. 14:387–400.

    Google Scholar 

  • Parmeggiani, P. L. (1980). Temperature regulation during sleep: A study in homeostasis. In Orem, J., and Barnes, Ch.D. (eds.), Physiology in Sleep, Academic Press, New York, pp. 97–143.

    Google Scholar 

  • Parmeggiani, P. L., Lenzi, P., Azzaroni, A., and D'Alessandro, R. (1982). Hippocampal influence on unit responses elicited in the cat's auditory cortex by acoustic stimulation. Exp. Neurol. 78:259–274.

    Google Scholar 

  • Pearson, K. S., Berber, D. S., Tabachnick, B. G., and Fidell, S. (1995). Predicting noise-induced sleep disturbances. J. Acoust. Soc. Am. 97:331–338.

    Google Scholar 

  • Pedemonte, M., Peña, J. L., Morales-Cobas, G., and Velluti, R. A. (1994). Effects of sleep on the responses of single cells in the lateral superior olive. Arch. Ital. Biol. 132:165–178.

    Google Scholar 

  • Pedemonte, M., Peña, J. L., Torterolo, P., and Velluti, R. A. (1996a). Auditory deprivation modifies sleep in the guinea-pig. Neurosci. Lett. 223:1–4.

    Google Scholar 

  • Pedemonte, M., Peña, J. L., and Velluti, R. A. (1996b). Firing of inferior colliculus auditory neuron is phase-locked to the hippocampus theta rhythm during paradoxical sleep and waking. Exp. Brain Res. 112:41–46.

    Google Scholar 

  • Pedemonte, M., Rodríguez, A., and Velluti, R. A. (1999). Hippocampal theta waves as an electrocardiogram rhythm timer in paradoxical sleep. Neurosci. Lett. 276:5–8.

    Google Scholar 

  • Pedemonte, M., Pérez-Perera, L., Peña, J. L., and Velluti, R. A. (2001). Sleep and wakefulness auditory processing: Cortical units vs. hippocampal theta rhythm. Sleep Res. Online 4:51–57.

    Google Scholar 

  • Peña, J. L., Pedemonte, M. Ribeiro, M. F., and Velluti, R. (1992). Single unit activity in the guinea-pig cochlear nucleus during sleep and wakefulness. Arch. Ital. Biol. 130:179–189.

    Google Scholar 

  • Peña, J. L., Pérez-Perera, L., Bouvier, M., and Velluti, R. A. (1999). Sleep and wakefulness modulation of the neuronal firing in the auditory cortex of the guinea-pig. Brain Res. 816:463–470.

    Google Scholar 

  • Pompeiano, O. (1970). Mechanisms of sensorimotor integration during sleep. In Stellar, E., and Sprague, J. M. (eds.), Progress in Physiological Psychology, Academic Press, New York, pp. 1–179.

    Google Scholar 

  • Redding, F. K. (1967). Modification of sensory cortical evoked potentials by hippocampal stimulation. Electroenceph. Clin. Neurophysiol. 22:74–83.

    Google Scholar 

  • Raghavachari, S., Rizzuto,D., Caplan, J., Kirschen, M., Bourgeois,B., Madesn, J., Kahana, M., and Lisman, J. (2001). Gating of human theta oscillations by a working memory task. J. Neurosci. 21:3175–3183.

    Google Scholar 

  • Reivich, M., Isaacs, G., Evarts, E., and Kety, S. S. (1968). The effects of slow wave sleep and REM sleep on regional cerebral blood flow in cats. J. Neurochem. 15:301–306.

    Google Scholar 

  • Saldaña, E., Feliciano, M., and Mugnaini, E. (1996). Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J. Comp. Neurol. 371:15–40.

    Google Scholar 

  • Scoville, W.B., and Milner,B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psych. 20:11–21.

    Google Scholar 

  • Soja, P. J., Cairns, B. E., and Kristensen, M. P. (1998). Transmission through ascending trigeminal and lumbar sensory pathways: Dependence on behavioral state. In Lydic, R., and Baghdoyan, H. A. (eds.), Handbook of Behavioral State Control, CRC Press, Boca Raton, pp. 521–544.

    Google Scholar 

  • Sutherland, G. R., and McNaughton, B. (2000). Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10:180–186.

    Google Scholar 

  • Terzano, M. G., Parrino, L., Fioriti, G., Orofiamma, B., and Depoortere, H. (1990). Modifications of sleep structure by increasing levels of acoustic perturbation in normal subjects. Electroenceph. Clin. Neurophysiol. 76:29–38.

    Google Scholar 

  • Tesche, C. D., and Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. U.S.A. 97:919–924.

    Google Scholar 

  • Torterolo, P., Pedemonte, M., and Velluti, R. A. (1995). Intracellular in vivo recording of inferior colliculus auditory neurons from awake guinea-pigs. Arch. Ital. Biol. 134:57–64.

    Google Scholar 

  • Torterolo, P., Zurita, P., Pedemonte, M., and Velluti, R. A. (1998). Auditory cortical efferent actions upon inferior colliculus unitary activity in the guinea pig. Neurosci. Lett. 249:172–176.

    Google Scholar 

  • Vallet, M. (1982). La perturbation du sommeil par le bruit. Soz. Praventivmed. 27:124–131.

    Google Scholar 

  • Velluti, R. (1985). An electrochemical approach to sleep metabolism: A pO2 paradoxical sleep system. Physiol. Behav. 34:355–358.

    Google Scholar 

  • Velluti, R. (1988). A functional viewpoint on paradoxical sleep-related brain regions. Acta Physiol. Pharmacol. Latinoamer. 38:99–115.

    Google Scholar 

  • Velluti, R. A. (1997). Interactions between sleep and sensory physiology. J. Sleep Res. 6:61–77.

    Google Scholar 

  • Velluti, R. A., Pedemonte, M., and García-Austt, E. (1989). Correlative changes of auditory nerve and microphonic potentials throughout sleep. Hearing Res. 39:203–208.

    Google Scholar 

  • Velluti, R. A., Pedemonte, M., and Peña, J. L. (1990).Auditory brain stem unit activity during sleep phases. In Horne, J. (ed.), Sleep' 90, Pontenagel Press, Bochum, pp. 94–96.

    Google Scholar 

  • Velluti, R. A., Peña, J. L., and Pedemonte, M. (2000). Reciprocal actions between sensory signals and sleep. Biol. Signals Recept. 9:297–308.

    Google Scholar 

  • Vertes, R. P., and Kocsis, B. (1997). Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926.

    Google Scholar 

  • Vital-Durand, F., and Michel, F. (1971). Effets de la desafferentation periphérique sur le cicle veillesommeil chez le chat. Arch. Ital. Biol. 109:166–186.

    Google Scholar 

  • Wallenstein, G. V., Eichenbaum, H., and Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends Neurosci. 21:317–323.

    Google Scholar 

  • Zhang, H., and Kelly, J. B. (2001). Ampa and nmda receptors regulate responses of neurons in the rat's inferior colliculus. J. Neurophysiol. 86:871–880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velluti, R.A., Pedemonte, M. In Vivo Approach to the Cellular Mechanisms for Sensory Processing in Sleep and Wakefulness. Cell Mol Neurobiol 22, 501–516 (2002). https://doi.org/10.1023/A:1021956401616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021956401616

Navigation