Skip to main content

Sleep-Wake Neurobiology

  • Chapter
  • First Online:
Cannabinoids and Sleep

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1297))

Abstract

Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Havekes R, Saletin JM, Walker MP (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23:R774–R788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN (2018) Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 41

    Google Scholar 

  • Altman NG, Izci-Balserak B, Schopfer E, Jackson N, Rattanaumpawan P, Gehrman PR, Patel NP, Grandner MA (2012) Sleep duration versus sleep insufficiency as predictors of cardiometabolic health outcomes. Sleep Med 13:1261–1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, De Luca R, Venner A, Malyshevskaya O, Lazarus M, Arrigoni E, Fuller PM (2018) Genetic activation, inactivation, and deletion reveal a limited and nuanced role for Somatostatin-containing basal forebrain neurons in behavioral state control. J Neurosci 38:5168–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, Lu J (2012) Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 32:17970–17976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:8744

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110

    Article  CAS  PubMed  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    Article  CAS  PubMed  Google Scholar 

  • Batini C, Moruzzi G, Palestini M, Rossi GF, Zanchetti A (1958) Presistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science 128:30–32

    Article  CAS  PubMed  Google Scholar 

  • Benedetto L, Chase MH, Torterolo P (2012) GABAergic processes within the median preoptic nucleus promote NREM sleep. Behav Brain Res 232:60–65

    Article  CAS  PubMed  Google Scholar 

  • Benedetto L, Rodriguez-Servetti Z, Lagos P, D’Almeida V, Monti JM, Torterolo P (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11–15

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Abercrombie ED (1999) Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis. Neuroscience 93:1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt JC, Diniz GB (2018) Neuroanatomical structure of the MCH system. In: Pandi Perumal SR, Torterolo P, Monti J (eds) Melanin-concentrating hormone and sleep. Springer, Switzerland

    Google Scholar 

  • Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M (2018) VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 4:44–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    CAS  PubMed  Google Scholar 

  • Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brager AJ, Ehlen JC, Castanon-Cervantes O, Natarajan D, Delisser P, Davidson AJ, Paul KN (2013) Sleep loss and the inflammatory response in mice under chronic environmental circadian disruption. PLoS One 8:e63752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks PL, Peever JH (2012) Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci 32:9785–9795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ (2012) Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med 157:549–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown RE, McKenna JT (2015) Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol 6:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Carskadon MA, Dement W (2001) Normal human sleep: an overview. Elsevier-Saunders, Philadelphia

    Google Scholar 

  • Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L (2009) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29:10939–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase MH (2013) Motor control during sleep and wakefulness: clarifying controversies and resolving paradoxes. Sleep Med Rev 17:299–312

    Article  PubMed  Google Scholar 

  • Chase MH, Morales FR (2005) Control of motoneurons during sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine. Elsevier-Saunders, Philadelphia, pp 154–168

    Chapter  Google Scholar 

  • Chen L, Yin D, Wang TX, Guo W, Dong H, Xu Q, Luo YJ, Cherasse Y, Lazarus M, Qiu ZL, Lu J, Qu WM, Huang ZL (2016) Basal forebrain cholinergic neurons primarily contribute to inhibition of Electroencephalogram Delta activity, rather than inducing behavioral wakefulness in mice. Neuropsychopharmacology 41:2133–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23:10691–10702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisse Y, Toossi H, Ishibashi M, Mainville L, Leonard CS, Adamantidis A, Jones BE (2018) Discharge and role of acetylcholine Pontomesencephalic neurons in cortical activity and sleep-wake states examined by Optogenetics and Juxtacellular recording in mice. eNeuro 5

    Google Scholar 

  • Clement O, Sapin E, Berod A, Fort P, Luppi PH (2011) Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 34:419–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa A, Castro-Zaballa S, Lagos P, Chase MH, Torterolo P (2018) Distribution of MCH-containing fibers in the feline brainstem: relevance for REM sleep regulation. Peptides 104:50–61

    Article  CAS  PubMed  Google Scholar 

  • Crochet S, Sakai K (1999) Effects of microdialysis application of monoamines on the EEG and behavioural states in the cat mesopontine tegmentum. Eur J Neurosci 11:3738–3752

    Article  CAS  PubMed  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241

    Article  CAS  PubMed  Google Scholar 

  • Davis CJ, Clinton JM, Jewett KA, Zielinski MR, Krueger JM (2011) Delta wave power: an independent sleep phenotype or epiphenomenon? J Clin Sleep Med 7:S16–S18

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P (2015) Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain Res 1598:114–128

    Article  CAS  PubMed  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dringenberg HC, Vanderwolf CH (1997) Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems. Exp Brain Res 116:160–174

    Article  CAS  PubMed  Google Scholar 

  • Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19:1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondell E, Axelsson J, Franck K, Ploner A, Lekander M, Balter K, Gaines H (2011) Short natural sleep is associated with higher T cell and lower NK cell activities. Brain Behav Immun 25:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Frank MG (2011) Sleep and developmental plasticity not just for kids. Prog Brain Res 193:221–232

    Article  PubMed  Google Scholar 

  • Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519:933–956

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995

    Article  CAS  PubMed  Google Scholar 

  • Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J (2010) Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 30:14543–14551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goutagny R, Luppi PH, Salvert D, Lapray D, Gervasoni D, Fort P (2008) Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience 152:849–857

    Article  CAS  PubMed  Google Scholar 

  • Grace KP, Horner RL (2015) Evaluating the evidence surrounding Pontine cholinergic involvement in REM sleep generation. Front Neurol 6:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ultrastructure of ChAT-immunoreactive synaptic terminals in the thalamic reticular nucleus of the rat. J Comp Neurol 278:486–497

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Shi YF, Xi W, Zhou R, Tan ZB, Wang H, Li XM, Chen Z, Feng G, Luo M, Huang ZL, Duan S, Yu YQ (2014) Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol 24:693–698

    Article  CAS  PubMed  Google Scholar 

  • Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, Vyssotski AL, Wisden W, Franks NP (2018) A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus. Curr Biol 28:2263–2273 e2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart CN, Larose JG, Fava JL, James BL, Wing RR (2013) The association between time in bed and obesity risk in young adults. Behav Sleep Med 11:321–327

    Article  PubMed  Google Scholar 

  • Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 106:2418–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2016) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19:290–298

    Article  CAS  PubMed  Google Scholar 

  • Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, Franken P, Tafti M (2012) Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32:12506–12517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holst SC, Muller T, Valomon A, Seebauer B, Berger W, Landolt HP (2017) Functional polymorphisms in dopaminergic genes modulate neurobehavioral and neurophysiological consequences of sleep deprivation. Sci Rep 7:45982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Irmak SO, de Lecea L (2014) Basal forebrain cholinergic modulation of sleep transitions. Sleep 37:1941–1951

    Article  PubMed  Google Scholar 

  • Isaac SO, Berridge CW (2003) Wake-promoting actions of dopamine D1 and D2 receptor stimulation. J Pharmacol Exp Ther 307:386–394

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M (2013) Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 6:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (2008) Brain serotonergic neuronal activity in behaving cats. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) (ed) serotonin and sleep: molecular, functional and clinical aspects. . Birkhauser, Basel. Boston, Berlin

    Google Scholar 

  • Jewett KA, Taishi P, Sengupta P, Roy S, Davis CJ, Krueger JM (2015) Tumor necrosis factor enhances the sleep-like state and electrical stimulation induces a wake-like state in co-cultures of neurons and glia. Eur J Neurosci 42:2078–2090

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones B (2005) Basic mechanisms of sleep-wake states. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine. Elsevier-Saunders, Philadelphia, pp 136–153

    Chapter  Google Scholar 

  • Kalivas PW (1982) Histamine-induced arousal in the conscious and pentobarbital-pretreated rat. J Pharmacol Exp Ther 222:37–42

    CAS  PubMed  Google Scholar 

  • Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M (2008) An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 105:1309–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 112:3535–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Wilkens LR, Schembre SM, Henderson BE, Kolonel LN, Goodman MT (2013) Insufficient and excessive amounts of sleep increase the risk of premature death from cardiovascular and other diseases: the multiethnic cohort study. Prev Med 57:377–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroeger D, Absi G, Gagliardi C, Bandaru SS, Madara JC, Ferrari LL, Arrigoni E, Munzberg H, Scammell TE, Saper CB, Vetrivelan R (2018) Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat Commun 9:4129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE (2017) Cholinergic, Glutamatergic, and GABAergic neurons of the Pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 37:1352–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubin L (2001) Carbachol models of REM sleep: recent developments and new directions. Arch Ital Biol 139:147–168

    CAS  PubMed  Google Scholar 

  • Lagos P, Monti JM, Jantos H, Torterolo P (2012) Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci 90:895–899

    Article  CAS  PubMed  Google Scholar 

  • Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM (2009) Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res 1265:103–110

    Article  CAS  PubMed  Google Scholar 

  • Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P (2011) Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res 218:259–266

    Article  CAS  PubMed  Google Scholar 

  • Lapierre JL, Kosenko PO, Lyamin OI, Kodama T, Mukhametov LM, Siegel JM (2007) Cortical acetylcholine release is lateralized during asymmetrical slow-wave sleep in northern fur seals. J Neurosci 27:11999–12006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Cho SJ, Cho IH, Kim SJ (2012) Insufficient sleep and suicidality in adolescents. Sleep 35:455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RS, Steffensen SC, Henriksen SJ (2001) Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci 21:1757–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899

    Article  CAS  PubMed  Google Scholar 

  • Lopez Hill X, Pascovich C, Urbanavicius J, Torterolo P, Scorza MC (2013) The median raphe nucleus participates in the depressive-like behavior induced by MCH: differences with the dorsal raphe nucleus. Peptides 50:96–99

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20:3830–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    Article  CAS  PubMed  Google Scholar 

  • Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci U S A 89:743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Leung LS (2009) Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology 111:725–733

    Article  CAS  PubMed  Google Scholar 

  • Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P (2006) Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 100:271–283

    Article  CAS  PubMed  Google Scholar 

  • Marrosu F, Portas C, Mascia MS, Casu MA, Fa M, Giagheddu M, Imperato A, Gessa GL (1995) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res 671:329–332

    Article  CAS  PubMed  Google Scholar 

  • McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302–330

    Article  PubMed  Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60

    Article  CAS  PubMed  Google Scholar 

  • McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    Article  CAS  PubMed  Google Scholar 

  • McGinty D, Szymusiak R (2005a) Sleep-promoting mechanisms in mammals. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine. Elsevier-Saunders, Philadelphia, pp 169–184

    Chapter  Google Scholar 

  • McGinty D, Szymusiak R (2005b) Sleep-promoting mechanisms in mammals. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine. Elsevier-Saunders, Philadelphia, pp 169–184

    Chapter  Google Scholar 

  • Mignot E (2011a) Narcolepsy: pathophysiology and genetic predisposition. In: Krieger MH, Roth T, Dement W (eds) Principles and practices of sleep medicine. Saunders, Philadelphia, pp 938–956

    Chapter  Google Scholar 

  • Mignot E (2011b) Narcolepsy: pathophysiology and genetic predisposition. In: Krieger MH, Roth T, Dement W (eds) Principles and practices of sleep medicine. Saunders, Philadelphia, pp 938–956

    Chapter  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273:133–141

    Article  CAS  PubMed  Google Scholar 

  • Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449–451

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49:429–454

    Article  PubMed  Google Scholar 

  • Monti JM (2010) The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 14:319–327

    Article  PubMed  Google Scholar 

  • Monti JM (2011a) The role of tuberomammillary nucleus histaminergic neurons, and of their receptors, in the regulation of sleep and waking. In: Mallick BN, Pandi-Perumal SR, RW MC, Morrison AR (eds) REM Sleep: Regulation and Function. Cambridge University Press, Cambridge, pp 223–233

    Google Scholar 

  • Monti JM (2011b) Serotonin control of sleep-wake behavior. Sleep Med Rev 15:269–281

    Article  PubMed  Google Scholar 

  • Monti JM, Fernandez M, Jantos H (1990) Sleep during acute dopamine D1 agonist SKF 38393 or D1 antagonist SCH 23390 administration in rats. Neuropsychopharmacology 3:153–162

    CAS  PubMed  Google Scholar 

  • Monti JM, Lagos P, Jantos H, Torterolo P (2015) Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 56:185–188

    Article  CAS  Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133

    Article  PubMed  Google Scholar 

  • Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17:293–298

    Article  PubMed  Google Scholar 

  • Moore JT, Chen J, Han B, Meng QC, Veasey SC, Beck SG, Kelz MB (2012) Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol 22:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  • Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G (2011) Regional slow waves and spindles in human sleep. Neuron 70:153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobili L, Ferrara M, Moroni F, De Gennaro L, Russo GL, Campus C, Cardinale F, De Carli F (2011) Dissociated wake-like and sleep-like electro-cortical activity during sleep. NeuroImage 58:612–619

    Article  PubMed  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–165

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d’Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M (2017) Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 8:734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okun ML, Kline CE, Roberts JM, Wettlaufer B, Glover K, Hall M (2013) Prevalence of sleep deficiency in early gestation and its associations with stress and depressive symptoms. J Womens Health (Larchmt) 22:1028–1037

    Article  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22:7695–7711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS (2016) Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: a study using a knockout mouse model. Neuropharmacology 106:20–34

    Article  CAS  PubMed  Google Scholar 

  • Piper DC, Upton N, Smith MI, Hunter AJ (2000) The novel brain neuropeptide, orexin-a, modulates the sleep-wake cycle of rats. Eur J Neurosci 12:726–730

    Article  CAS  PubMed  Google Scholar 

  • Plourde G, Chartrand D, Fiset P, Font S, Backman SB (2003) Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index. Br J Anaesth 91:583–586

    Article  CAS  PubMed  Google Scholar 

  • Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60:13–35

    Article  CAS  PubMed  Google Scholar 

  • Ramesh V, Thakkar MM, Strecker RE, Basheer R, McCarley RW (2004) Wakefulness-inducing effects of histamine in the basal forebrain of freely moving rats. Behav Brain Res 152:271–278

    Article  CAS  PubMed  Google Scholar 

  • Rector DM, Topchiy IA, Carter KM, Rojas MJ (2005) Local functional state differences between rat cortical columns. Brain Res 1047:45–55

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JA, Lane JM, Vlasac IM, Rutter MK, Czeisler C, Saxena R (2018) Association of DAT1 genetic variants with habitual sleep duration in the UK biobank. Sleep 42(1):zsy193. https://doi.org/10.1093/sleep/zsy193

    Article  PubMed Central  Google Scholar 

  • Sakai K (2011) Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience 182:144–161

    Article  CAS  PubMed  Google Scholar 

  • Sakai K (2017) Are there sleep-promoting neurons in the mouse Parafacial zone? Neuroscience 367:98–109

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:1. page following 696

    Article  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P, Clement O, Hanriot L, Fort P, Luppi PH (2009) Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 4:e4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 6:e20360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115:117–141

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YF, Han Y, Su YT, Yang JH, Yu YQ (2015) Silencing of cholinergic basal forebrain neurons using Archaerhodopsin prolongs slow-wave sleep in mice. PLoS One 10:e0130130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, Boly M, Postle BR, Tononi G (2017) The neural correlates of dreaming. Nat Neurosci 20:872–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JM (2008) Do all animals sleep? Trends Neurosci 31:208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JM (2011) REM Sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine. Elsevier-Saunders, Philadelphia, pp 92–111

    Chapter  Google Scholar 

  • Szymusiak R, McGinty D (1986) Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 370:82–92

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153:860–870

    Article  CAS  PubMed  Google Scholar 

  • Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A 113:12826–12831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobaldini E, Cogliati C, Fiorelli EM, Nunziata V, Wu MA, Prado M, Bevilacqua M, Trabattoni D, Porta A, Montano N (2013) One night on-call: sleep deprivation affects cardiac autonomic control and inflammation in physicians. Eur J Intern Med 24:664–670

    Article  PubMed  Google Scholar 

  • Torterolo P, Benedetto L, Lagos P, Sampogna S, Chase MH (2009) State-dependent pattern of Fos protein expression in regionally-specific sites within the preoptic area of the cat. Brain Res 1267:44–56

    Article  CAS  PubMed  Google Scholar 

  • Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torterolo P, Morales FR, Chase MH (2002) GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep. Brain Res 944:1–9

    Article  CAS  PubMed  Google Scholar 

  • Torterolo P, Sampogna S, Chase MH (2009) MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 1268:76–87

    Article  CAS  PubMed  Google Scholar 

  • Torterolo P, Sampogna S, Morales FR, Chase MH (2002) Gudden’s dorsal tegmental nucleus is activated in carbachol-induced active (REM) sleep and active wakefulness. Brain Res 944:184–189

    Article  CAS  PubMed  Google Scholar 

  • Torterolo P, Sampogna S, Morales FR, Chase MH (2006) MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 1119:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, Lopez-Hill X, Chase MH, Monti JM (2015) Melanin-concentrating hormone (MCH): role in REM sleep and depression. Front Neurosci 9:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Torterolo P, Vanini G (2010) Involvement of GABAergic mechanisms in the laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) in the promotion of REM sleep. In: Monti J, Pandi-Perumal SR, Möhler H (eds) (ed) GABA and sleep: molecular, functional and clinical aspects. Springer, Basel, pp 213–231

    Chapter  Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2000) GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep. Brain Res 884:68–76

    Article  CAS  PubMed  Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2001) GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep. Brain Res 892:309–319

    Article  CAS  PubMed  Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2003) Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 26:25–28

    PubMed  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31:10529–10539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanavicius J, Lagos P, Torterolo P, Abin-Carriquiry JA, Scorza C (2016) Melanin-concentrating hormone projections to the dorsal raphe nucleus: an immunofluorescence and in vivo microdialysis study. J Chem Neuroanat 72:16–24

    Article  CAS  PubMed  Google Scholar 

  • Urbanavicius J, Lagos P, Torterolo P, Scorza C (2014) Prodepressive effect induced by microinjections of MCH into the dorsal raphe: time course, dose dependence, effects on anxiety-related behaviors, and reversion by nortriptyline. Behav Pharmacol 25:316–324

    Article  CAS  PubMed  Google Scholar 

  • Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 112:584–589

    Article  PubMed  CAS  Google Scholar 

  • Vanini G, Baghdoyan HA (2013) Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. Sleep 36:337–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanini G, Nemanis K, Baghdoyan HA, Lydic R (2014) GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur J Neurosci 40:2264–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanini G, Torterolo P, McGregor R, Chase MH, Morales FR (2007) GABAergic processes in the mesencephalic tegmentum modulate the occurrence of active (rapid eye movement) sleep in Guinea pigs. Neuroscience 145:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Vanini G, Wathen BL, Lydic R, Baghdoyan HA (2011) Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci 31:2649–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanini G, Watson CJ, Lydic R, Baghdoyan HA (2008) Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology 109:978–988

    Article  CAS  PubMed  Google Scholar 

  • Varin C, Luppi PH, Fort P (2018) Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 41

    Google Scholar 

  • Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM (2016) A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26:2137–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113

    Article  CAS  PubMed  Google Scholar 

  • von Economo C (1930a) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Article  Google Scholar 

  • Von Economo C (1930b) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Article  Google Scholar 

  • Vujovic N, Gooley JJ, Jhou TC, Saper CB (2015) Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol 523:2714–2737

    Article  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y (2015) Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y (2018) Regulation of REM and non-REM sleep by periaqueductal GABAergic neurons. Nat Commun 9:354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng FJ, Williams RH, Hawryluk JM, Lu J, Scammell TE, Saper CB, Arrigoni E (2014) Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord. J Physiol 592:1601–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem 82:721–735

    Article  CAS  PubMed  Google Scholar 

  • Wild CJ, Nichols ES, Battista ME, Stojanoski B, Owen AM (2018) Dissociable effects of self-reported daily sleep duration on high-level cognitive abilities. Sleep

    Google Scholar 

  • Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, Arrigoni E (2014) Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci 34:6023–6029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams JA, Reiner PB (1993) Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J Neurosci 13:3878–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi MC, Morales FR, Chase MH (1999) Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol 82:2015–2019

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18:1641–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R (2016) Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an Opto-dialysis study. J Neurosci 36:2057–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Anesthesiology, University of Michigan (GV), and the “Agencia Nacional de Investigación e Innovación, Fondo Clemente Estable FCE-1-2017-1-136550” grant, the “Comisión Sectorial de Investigación Científica I+D-2016-589” grant, and the “Programa de Desarrollo de Ciencias Básicas, PEDECIBA” from Uruguay (PT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Vanini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vanini, G., Torterolo, P. (2021). Sleep-Wake Neurobiology. In: Monti, J.M., Pandi-Perumal, S.R., Murillo-Rodríguez, E. (eds) Cannabinoids and Sleep. Advances in Experimental Medicine and Biology, vol 1297. Springer, Cham. https://doi.org/10.1007/978-3-030-61663-2_5

Download citation

Publish with us

Policies and ethics