Skip to main content
Log in

Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (Ni-HN i, Ni-C′i−1, HN i - C′i−1) in two tensor frames and only backbone HN-HN NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 Å with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hashimi, H.M., Valafar, H., Terrell, M., Zartler, E.R., Eidsness, M.K. and Prestegard, J.H. (2000) J. Magn. Reson., 143, 402-406.

    Google Scholar 

  • Andrec, M., Du, P. and Levy, R.M. (2001) J. Biomol. NMR, 21, 335-347.

    Google Scholar 

  • Bax, A. and Tjandra, N. (1997) J. Biomol. NMR, 10, 289-292.

    Google Scholar 

  • Beger, R.D. and Bolton, P.H. (1997) J. Biomol. NMR, 10, 129-142.

    Google Scholar 

  • Bonvin, A., Houben, K., Guenneugues, M., Kaptein, R. and Boelens, R. (2001) J. Biomol. NMR, 21, 221-233.

    Google Scholar 

  • Bowers, P.M., Strauss, C.E.M. and Baker, D. (2000) J. Biomol. NMR, 18, 311-318.

    Google Scholar 

  • Brünger, A.T. (1987) XPLOR Version 3.1: A System for X-Ray Crystallography and NMR, Yale University Press, New Haven, CT.

    Google Scholar 

  • Clore, G.M. and Garrett, D.S. (1999) J. Am. Chem. Soc., 121, 9008-9012.

    Google Scholar 

  • Clore, G.M., Gronenborn, A.M. and Bax, A. (1998a) J. Magn. Reson., 133, 216-221.

    Google Scholar 

  • Clore, G.M., Gronenborn, A.M. and Tjandra, N. (1998b) J. Magn. Reson., 131, 159-162.

    Google Scholar 

  • Clore, G.M., Starich, M.R. and Gronenborn, A.M. (1998c) J. Am. Chem. Soc., 120, 10571-10572.

    Google Scholar 

  • Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M.L. and Kuszewski, J. (1999) J. Am. Chem. Soc., 121, 6513-6514.

    Google Scholar 

  • Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142-2143.

    Google Scholar 

  • Fleming, K., Gray, D., Prasannan, S. and Matthews, S. (2000) J. Am. Chem. Soc., 122, 5224-5225.

    Google Scholar 

  • Fowler, C.A., Tian, F., Al-Hashimi, H.M. and Prestegard, J.H. (2000) J. Mol. Biol., 304, 447-460.

    Google Scholar 

  • Gardner, K.H. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 7599-7600.

    Google Scholar 

  • Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Biochemistry, 36, 1389-1401.

    Google Scholar 

  • Goto, N.K. and Kay, L.E. (2000) Curr. Opin. Struct. Biol., 10, 585-592.

    Google Scholar 

  • Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. and Kay, L.E. (1999) J. Biomol. NMR, 13, 369-374.

    Google Scholar 

  • Grzesiek, S., Anglister, J., Ren, H. and Bax, A. (1993) J. Am. Chem. Soc., 115, 4369-4370.

    Google Scholar 

  • Hansen, M.R., Mueller, L. and Pardi, A. (1998) Nat. Struct. Biol., 5, 1065-1074.

    Google Scholar 

  • Hus, J.C., Marion, D. and Blackledge, M. (2000) J. Mol. Biol., 298, 927-936.

    Google Scholar 

  • Hus, J.-C., Marion, D. and Blackledge, M. (2001) J. Am. Chem. Soc., 123, 1541-1542.

    Google Scholar 

  • Kiddle, G.R. and Homans, S.W. (1998) FEBS Lett., 436, 128-130.

    Google Scholar 

  • Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M. (1995) J. Magn Reson. B, 106, 92-96.

    Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Crystallogr., 26, 283-291.

    Google Scholar 

  • Losonczi, J.A. and Prestegard, J.H. (1998) J. Biomol. NMR, 12, 447-451.

    Google Scholar 

  • Losonczi, J.A., Andrec, M., Fischer, M.W.F. and Prestegard, J.H. (1999) J. Magn. Reson., 138, 334-342.

    Google Scholar 

  • Mal, T.K., Matthews, S.J., Kovacs, H., Campbell, I.D. and Boyd, J. (1998) J. Biomol. NMR, 12, 259-276.

    Google Scholar 

  • Mueller, G.A., Choy, W.Y., Skrynnikov, N.R. and Kay, L.E. (2000a) J. Biomol. NMR, 18, 183-188.

    Google Scholar 

  • Mueller, G.A., Choy, W.Y., Yang, D.W., Forman-Kay, J.D., Venters, R.A. and Kay, L.E. (2000b) J. Mol. Biol., 300, 197-212.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334-12341.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1999) J. Biomol. NMR, 13, 187-191.

    Google Scholar 

  • Prosser, R.S., Losonczi, J.A. and Shiyanovskaya, I.V. (1998) J. Am. Chem. Soc., 120, 11010-11011.

    Google Scholar 

  • Ramirez, B.E. and Bax, A. (1998) J. Am. Chem. Soc., 120, 9106-9107.

    Google Scholar 

  • Rohl, C.A. and Baker, D. (2002) J. Am. Chem. Soc., 124, 2723-2729.

    Google Scholar 

  • Rosen, M.K., Gardner, K.H., Willis, R.C., Parris, W.E., Pawson, T. and Kay, L.E. (1996) J. Mol. Biol., 263, 627-636.

    Google Scholar 

  • Rückert, M. and Otting, G. (2000) J. Am. Chem. Soc., 122, 7793-7797.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.

    Google Scholar 

  • Tian, F., Valafar, H. and Prestegard, J.H. (2001) J. Am. Chem. Soc., 123, 11791-11796.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111-1114.

    Google Scholar 

  • Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264-6272.

    Google Scholar 

  • Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732-737.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci., 92, 9279-9283.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1997) Nat. Struct. Biol., 4, 292-297.

    Google Scholar 

  • Wang, A.C., Grzesiek, S., Tschudin, R., Lodi, P.J. and Bax, A. (1995) J. Biomol. NMR, 5, 376-382.

    Google Scholar 

  • Wang, H., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (1998a) J. Biomol. NMR, 12, 443-446.

    Google Scholar 

  • Wang, Y.X., Marquardt, J.L., Wingfield, P., Stahl, S.J., LeeHuang, S., Torchia, D. and Bax, A. (1998b) J. Am. Chem. Soc., 120, 7385-7386.

    Google Scholar 

  • Wu, Z.R. and Bax, A. (2002) J. Am. Chem. Soc., 124, 9672-9673.

    Google Scholar 

  • Zweckstetter, M. and Bax, A. (2001) J. Am. Chem. Soc., 123, 9490-9491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve W. Homans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesen, A.W., Homans, S.W. & Brown, J.M. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints. J Biomol NMR 25, 63–71 (2003). https://doi.org/10.1023/A:1021954812977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021954812977

Navigation