Skip to main content
Log in

Etching of Silicon Nitride in CCl2F2, CHF3, SiF4, and SF6 Reactive Plasma: A Comparative Study

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Silicon nitride is an important material layer in various types of microelectronic devices. Because of continuous integration of devices, patterning of this layer requires a highly selective and anisotropic etching process. Reactive ion etching is one of the most simple and popular plasma processes. The present work is an experimental analysis of primary etch characteristics in reactive ion etching of silicon nitride using chlorine- and/or fluorine-based organic and inorganic chemistries (CCl 2 F 2+O 2 , CHF 3+O 2 , SiF 4 +O2, SF6+O 2 , and SF 6+He) in order to obtain a simultaneous etch selectivity against polysilicon and silicon dioxide. A recipe, in CCl 2 F 2 /O 2 plasma chemistry, which provides acceptable etch characteristics, along with a reasonable simultaneous selectivity against polysilicon and silicon dioxide, has been formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. K. Mazumder, K. Kobayashi, Tamotsu Ogata, J. Mitsuhashi, Y. Mashiko, and H. Koyama, J. Electrochem. Soc. 143, 368 (1996).

    Google Scholar 

  2. R. A. Colclaser, Microelectronic Processing and Device Design (Academic Press, NY, 1980), p. 47.

    Google Scholar 

  3. Yue Kuo, J. Electrochem. Soc. 142, 186 (1995).

    Google Scholar 

  4. U. S. Tandon, B. D. Pant, and Ashok Kumar, Vacuum 42, 1219 (1991).

    Google Scholar 

  5. K. Nojiri, K. Tsunokuni, K. Horibe, K. Ito, and S. Kishino, Extended Abstr. 17th Conf. Solid State Devices Mater. p. 337 (1985).

  6. K. Shiozawa, T. Oishi, H. Maeda, T. Murakami, K. Yasumura, Y. Abe, and Y. Tokuda, J. Electrochem Soc. 145, 1684 (1998).

    Google Scholar 

  7. V. K. Dwivedi, J. Electrochem Soc. 137, 2586 (1990).

    Google Scholar 

  8. S. Deleonibus, P. Molle, L. Tosti, and M. C. Taccusel, J. Electrochem. Soc. 138, 3739 (1991).

    Google Scholar 

  9. D. C. Gray, J. W. Butterbaugh, C. F. Hiatt, A. S. Lawing, and H. H. Sawin, J. Electrochem. Soc. 142, 3919 (1995).

    Google Scholar 

  10. S. S. Cooperman, A. I. Nasi, and G. J. Grula, J. Electrochem. Soc. 142, 3180 (1995).

    Google Scholar 

  11. W. Grynkewich, T. H. Fednyshyn, and R. H. Dumas, J. Vac. Sci. Technol. B 8, 5 (1990).

    Google Scholar 

  12. Haselden, P. Peavy, B. Eliscon, and T. Ahmed, Proc. SPIE-Intern. Soc. Opt. Eng. 115, 1185 (1990).

    Google Scholar 

  13. A. Jacob, U. S. Patent 3,795,557 (1974).

  14. H. M. Sanders, J. Dieleman, H. J. B. Peters, and J. A. M. Sanders, J. Electrochem. Soc. 129, 2559 (1983).

    Google Scholar 

  15. Field, D. F. Klenperer, and I. T. Wade, J. Vac. Sci. Technol. B 6, 551 (1988).

    Google Scholar 

  16. C. J. Mogab, A. C. Adams, and D. L. Flamm, J. Appl. Phys. Lett. 49, 3796 (1978).

    Google Scholar 

  17. G. Smolinsky and D. L. Flamm, J. Appl. Phys. 50, 982 (1979).

    Google Scholar 

  18. Y. Zhang, G. S. Oehrlein, G. M. W. Kroesen, M. Mittmer, and Stein, J. Electrochem. Soc. 140, 1439 (1993).

    Google Scholar 

  19. B. E. E. Kastenmeir, P. J. Matsuo, and G. S. Oehrlein, J. Vac. Sci. Technol. A 14, 2802 (1996).

    Google Scholar 

  20. G. W. Grykewich, T. H. Fedynyshyn, and R. H. Dumas, J. Vac. Sci. Technol. B 8, 5 (1990).

    Google Scholar 

  21. L. M. Ephrath, J. Electrochem. Soc. 126, 1419 (1979).

    Google Scholar 

  22. Ho-Jun Lee, Joong Kyun Kim, Jung Hun Kim, and Ki-Woong Whang Jeong Jeong Ho Kim, and Jung Hoon Joo, J. Vac. Sci. Technol. B 16, 500 (1998).

    Google Scholar 

  23. Histaka Hayashi, Kazuaki Kurihara, and Makoto Sekine, Jpn. J. Appl. Phys. 35, 2488 (1996).

    Google Scholar 

  24. Ying Zhang, G. S. Oehrlein, and F. H. Bell, J. Vac. Sci. Technol. A 14, 2127 (1996).

    Google Scholar 

  25. H. Toyoda, M. Tobinaga, and H. Komiya, Jpn. J Appl Phys. 20, 681 (1981).

    Google Scholar 

  26. D. H. G. Choe, C. Knapp, and A. Jacob, Solid State Technol. 27, 177 (1984).

    Google Scholar 

  27. T. K. S. Wong and S. G. Ingram, J. Vac. Sci. Technol. B 10, 2393 (1992).

    Google Scholar 

  28. A. M. Barklund and H. O. Blom, J. Vac. Sci. Technol. A 11, 1226 (1993).

    Google Scholar 

  29. Y. X. Li, M. Laros, P. M. Sarro, P. J. French, and R. F. Wolffenbuttel, Microelectr. Eng. 20, 321 (1993).

    Google Scholar 

  30. P. E. Riley, B. N. Defonseka, J. C. Sum, and D. Figueredo, IEEE Trans. Semicond. Manuf. 6, 290 (1993).

    Google Scholar 

  31. Ying Wang and L. Luo, J. Vac. Sci. Technol. A. 16, 1582 (1998).

    Google Scholar 

  32. D. E. Ibbotson, J. A. Mucha, D. L. Flamm, and J. M. Cook, Appl. Phys. Lett 46, 794 (1985).

    Google Scholar 

  33. Barkanic, D. M. Reynolds, R. J. Jaccodine, H. G. Stenger, J. Parks, and M. Vedage, Solid State Technol. 32, 109 (1989).

    Google Scholar 

  34. H. Boyd and M. S. Tang, Solid State Technol. 22, 133 (1979).

    Google Scholar 

  35. E. P. G. T. van de Ven and P. A. Zijlstra, Proc. Electrochem. Soc. 81, 112 (1981).

    Google Scholar 

  36. J. W. Couburn, J. Plasma Chem. Plasma Process. 2, 1 (1982).

    Google Scholar 

  37. B. Gorowitz and R. J. Saia, VLSI Electronics, Vol 8, Series Editor G. Norman, ed. (Academic Press, Orlando, Florida, 1984), p. 298.

    Google Scholar 

  38. P. E. Riley and D. A. Hanson, J. Vac. Sci. Technol. B 7, 1352 (1989).

    Google Scholar 

  39. P. H. Singer, Semicond Intern. 12, 68 (1988).

    Google Scholar 

  40. P. H. Singer, Semicond Intern. 10, 98 (1986).

    Google Scholar 

  41. H. W. Lehman and R. Widmer, J. Vac. Sci. Technol. 15, 319 (1978).

    Google Scholar 

  42. M. J. Vacile and F. A. Stevie, J. Appl. Phys. 53, 3799 (1982).

    Google Scholar 

  43. D. W. Hess and R. C. Bruce, in Dry Etching for Microelectronics, R. A. Powell, ed. (Elsevier, Amsterdam, 1984), p. 8.

    Google Scholar 

  44. D. L. Flamm, Plasma Etching: An Introduction, D. M. Manos and D. L. Flamm, eds, (Academic Press, San Diego, CA, 1989), p. 165.

    Google Scholar 

  45. B. E. E. Kastenmeir, P. J. Matsuo, and G. S. Oehrlein, and J. G. Langan J. Vac. Sci. Technol. A 16, 2047 (1998).

    Google Scholar 

  46. Hayasaka, H. Okana, and Y. Horiike, Solid State Technol. 31, 127 (1988).

    Google Scholar 

  47. J. Dulak, B. J. Howard, and C. Steinbruchel, J. Vac. Sci. Technol. A 9, 775 (1991).

    Google Scholar 

  48. B. E. Thompson and H. H. Sawin, J. Electrochem. Soc. 133, 1886 (1986).

    Google Scholar 

  49. K. M. Eisele, J. Electrochem. Soc. 128, 123 (1981).

    Google Scholar 

  50. R. Legtenberg, H. Janson, M. de Boerl and M. Elwenspoek, J. Electrochem. Soc. 142, 2020 (1995).

    Google Scholar 

  51. A. Burtsev, Y. X. Li, H. W. Ziezl, and C. I. M. Beenakker, Microelectr. Eng. 40, 85 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, B.D., Tandon, U.S. Etching of Silicon Nitride in CCl2F2, CHF3, SiF4, and SF6 Reactive Plasma: A Comparative Study. Plasma Chemistry and Plasma Processing 19, 545–563 (1999). https://doi.org/10.1023/A:1021886511288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021886511288

Navigation