Skip to main content
Log in

Heat Transport in a Pure Fluid Near the Critical Point: Steady State and Relaxation Dynamics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The steady-state conditions and relaxation dynamics of a fluid layer during heat transport experiments near the liquid-vapor critical point are studied theoretically. The application is to 3 He along the critical isochore and under normal gravity—where experimental data are available—as well as zero gravity. First, the steady-state density stratification from gravity and from heat flow is calculated. The resulting observable thermal conductivity \(\bar \lambda _{obs} \) is obtained as a function of the temperature difference ΔT (or the heat current Q) across the fluid layer and becomes a strong non-linear function of ΔT as Tc is approached. The calculated \(\bar \lambda _{obs} \) is compared with that from experiments both above and below Tc. Second, the spatial profiles of temperature and density and their temporal evolutions are calculated above Tc as ΔT is established after Q is switched on, or conversely as ΔT decays to zero after Q has been switched off. From the calculations, done both from a closed-form expression and from simulations, the “observable” and “asymptotic” relaxation times for reaching the steady state are calculated as a function of Q, and compared with the experiments above Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Straub, A. Haupt, and L. Eicher, Int. J. Thermophys. 16, 1033 (1995).

    Google Scholar 

  2. R. A. Wilkinson et al., Phys. Rev. E 57, 436 (1998).

    Google Scholar 

  3. R. F. Berg et al., to be published.

  4. E. P. Sakonidou, H. R. van den Berg, C. A. ten Seldam, and J. V. Sengers, J. Chem. Phys. 105, 10535 (1996).

    Google Scholar 

  5. H. Meyer and L. H. Cohen, Phys. Rev. A 38, 208 (1988).

    Google Scholar 

  6. C. C. Agosta, S. Wang, L. H. Cohen, and H. Meyer, J. Low Temp. Phys. 67, 237 (1987).

    Google Scholar 

  7. J. V. Sengers, in AIP Conference Proceedings, No. 11, J. Kestin (ed.), American Institute of Physics, New York (1973), pp. 229–277.

    Google Scholar 

  8. J. Straub, L. Eicher, and A. Haupt, Phys. Rev. E 51, 5556 (1995).

    Google Scholar 

  9. H. Klein, G. Schmitz, and D. Woermann, Phys. Rev. A 43, 4562 (1991).

    Google Scholar 

  10. P. Guenoun et al., Phys. Rev. E 47, 1531 (1993).

    Google Scholar 

  11. H. Boukari, R. L. Pego, and R. W. Gammon, Phys. Rev. E 52, 1614 (1995).

    Google Scholar 

  12. F. Zhong and H. Meyer, Phys. Rev. E 51, 3223 (1995).

    Google Scholar 

  13. F. Zhong and H. Meyer, Phys. Rev. E 53, 5935 (1996).

    Google Scholar 

  14. F. Zhong, A. Kogan, and H. Meyer, J. Low Temp. Phys. 108, 161 (1997).

    Google Scholar 

  15. A. B. Kogan and H. Meyer, J. Low Temp. Phys. 112, 417 (1998).

    Google Scholar 

  16. R. P. Behringer, A. Onuki, and H. Meyer, J. Low Temp. Phys. 81, 71 (1990).

    Google Scholar 

  17. C. Pittman, L. Cohen, and H. Meyer, J. Low Temp. Phys. 46, 115 (1982).

    Google Scholar 

  18. J. Luettmer-Strathmann, J. V. Sengers, and G. A. Olchowy, J. Chem. Phys. 103, 7482 (1995).

    Google Scholar 

  19. R. Folk and G. Moser, Cond. Matt. Phys. 7, 27 (1996).

    Google Scholar 

  20. R. P. Behringer, T. Doiron, and H. Meyer, J. Low Temp. Phys. 24, 315 (1976).

    Google Scholar 

  21. C. E. Pittmann, Ph.D. Dissertation, Department of Physics, Duke University, Durham, NC (1982).

  22. A. Onuki and R. A. Ferrell, Physica A 164, 245 (1990).

    Google Scholar 

  23. A. Onuki, H. Hao, and R. A. Ferrell, Phys. Rev. A 41, 2256 (1990).

    Google Scholar 

  24. H. Boukari, J. N. Shaumeyer, M. E. Briggs, and R. W. Gammon, Phys. Rev. A 41, 2260 (1990).

    Google Scholar 

  25. B. Zappoli, D. Bailly, Y. Garrabos, B. Le Neindre, P. Guenoun, and D. Beysens, Phys. Rev. A 41, 2264 (1990).

    Google Scholar 

  26. M. Gitterman and V. Steinberg, J. Appl. Math. Mech. 34 305 (1970).

    Google Scholar 

  27. R. Courant and K. Friedrichs, in Supersonic Flow and Shock Waves, John Wiley, New York (1948), Chap. 1B, p. 30.

    Google Scholar 

  28. J. V. Sengers, R. S. Basu, and J. M. H. Levelt Sengers, NASA Contractor Report 3424, National Technical Information Services, Springfield, VA.

  29. J. V. Sengers, Int. J. Thermophys. 6, 303 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, F., Meyer, H. Heat Transport in a Pure Fluid Near the Critical Point: Steady State and Relaxation Dynamics. Journal of Low Temperature Physics 114, 231–255 (1999). https://doi.org/10.1023/A:1021862122617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021862122617

Keywords

Navigation