Skip to main content
Log in

Glutamate NMDA Receptor Subunit R1 and GAD mRNA Expression in Human Temporal Lobe Epilepsy

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Molecular mechanisms underlying increased hippocampal excitability in human temporal lobe epilepsy (TLE) are largely unknown. A disturbance of the imbalance between excitatory and inhibitory neurotransmission pathways in the epileptic hippocampus may contribute substantially to a decreased seizure threshold.

2. We have extended the investigation whether TLE is associated with changes in the expression of GAD67 and NMDAR1 by assessing the relative amounts of the mRNAs in human hippocampal samples by means of semiquantitative RT-PCR. The samples included 16 hippocampal slices obtained at surgery from intractable TLE (HS, n = 14; non-HS, n = 2) and 3 postmortem control hippocampi.

3. The ratio for the GAD/NMDAR1 transcripts was significantly higher in TLE cases when compared to the nonepileptic samples. Such findings are mainly a consequence of the increased amounts of GAD mRNA detected in the epileptic hippocampus. Compared with nonepileptic samples, and without correction for neuron losses, the amounts of NMDAR1 mRNA in HS are slightly reduced, and in the non-HS samples they are significantly increased, which is consistent with an increase of NMDAR1 in the hippocampal remaining neurons, as previously reported.

4. Our results also contribute to the indication of GAD67 mRNA upregulation in human TLE. A possible functional implication for the increased GAD mRNA levels could be a mechanism to reduce neuronal hiperexcitability, synchronization, and/or the spread of seizure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Babb, T. L., Brown, W. J., Pretorius, J., Davenport, C., Lieb, J. P., and Crandall, P. H. (1984). Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25:729–740.

    Google Scholar 

  • Babb, T. L., Pretorius, J. K., Kupfer, W. R., and Crandall, P. H. (1989). Glutamate descarboxylaseimmunoreactive neurons are preserved in human epileptic hippocampus. J. Neurosci. 9:2562–2574.

    Google Scholar 

  • Bayer, T. A., Wiestler, O. D., and Wolf, H. K. (1995). Hippocampal loss of N-methyl-D-aspartate receptor subunit 1 mRNA in chronic temporal lobe epilepsy. Acta Neuropathol. (Berl.) 89:446–450.

    Google Scholar 

  • Blümck, I., Becker, A. J., Klein, C., Scheiwe, C., Lie, A. A., Beck, H., Waha, A., Friedl, M. G., Kuhn, R., Emson, P., Elger, C., and Wiestler, O. D. (2000). Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: Correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J. Neuropathol. Exp. Neurol. 59:1–10.

    Google Scholar 

  • Blümcke, I., Beck, H., Lie, A. A., and Wiestler, O. D. (1999). Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res. 36:205–223.

    Google Scholar 

  • Cavalheiro, E. A. (1990). GAD-immunoreactive neurons are preserved in the hippocampus of rats with spontaneous recurrent seizures. Braz. J. Med. Biol. Res. 23:555–558.

    Google Scholar 

  • Coyle, J. T., and Puttfarcken, P. (1993). Oxidative stress, glutamate, and degenerative disorders. Science 262:689–695.

    Google Scholar 

  • Delfs, J. M., Ciaramitaro, V. M., Soghomonian, J.-J., and Chesselet, M.-F. (1996). Unilateral nigrostriatal lesions induce a bilateral increase in glutamate decarboxylase messenger RNA in the reticular thalamic nucleus. Neuroscience 71:383–395.

    Google Scholar 

  • Esclapez, M., Hirsch, J. C., Khazipov, R., Ben-Ari, Y., and Bernard, C. (1997). Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proc. Natl. Acad. Sci. U.S.A. 28:12151–12156.

    Google Scholar 

  • Esclapez, M., and Houser, C. R. (1999). Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy. J. Comp. Neurol. 412:488–505.

    Google Scholar 

  • García-Ladona, F. J., Palacios, J. M., Probst, A., Wieser, H. G., and Mengod, G. (1994). Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected brain. An in situ hybridization study. Brain Res. Mol. Brain Res. 21:75–84.

    Google Scholar 

  • Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31–108.

    Google Scholar 

  • Kraus, J. E., Yeh, G. C., Bonhaus, D. W., Nadler, J. V., and Mcnamara, J. O. (1994). Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3. J. Neurosci. 14:4196–4205.

    Google Scholar 

  • Lee, S., Miskovisky, J., Williamson, J., Howels, R., Devinsky, O., Lothman, E., and Christakos, S. (1994). Changes in glutamate receptor and proenkephalin gene expression after kindled seizures. Brain Res. Mol. Brain Res. 24:34–42.

    Google Scholar 

  • Leite, J. P., Terra-Bustamante, V. C., Fernandes, R. M., Santos, A. C., Chimelli, L., Sakamoto, A. C., Assirati, J. A., and Takayanagui, O. M. (2000). Calcified neurocysticercotic lesions and postsurgery seizure control in temporal lobe epilepsy. Neurology 28:1485–1491.

    Google Scholar 

  • Lorente de Nó, R. (1934). Studies on the structure of the cerebral córtex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. 46:113–177.

    Google Scholar 

  • Mathern, G. H., Babb, T. L., Leite, J. P., Pretorius, J. K., Yeoman, K. M., and Kuhlman, P. A. (1996). The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res. 26:151–161.

    Google Scholar 

  • Mathern, G. H., Babb, T. L., Pretorius, J. K., and Leite, J. P. (1995). Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentate. J. Neurosci. 15:3990–4004.

    Google Scholar 

  • Mathern, G. H., Pretorius, J. K., Kornblum, H. I., Mendoza, D., Lozada, A., Leite, J. P., Chimelli, L. M. C., Fried, I., Sakamoto, A. C., Assirati, J. A., Lévesque, M. F., Adelson, P. D., and Peacock, W. J. (1997). Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 120:1937–1959.

    Google Scholar 

  • Mathern, G. H., Pretorius, J. K., Leite, J. P., Kornblum, H. I., Mendoza, D., Lozada, A., and Bertram, H. I. (1998). Hippocampal AMPA and NMDA mRNA levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy. Epilepsy Brain Res. 32:154–171.

    Google Scholar 

  • Mcdonald, J. W., Garafalo, E. A., Hood, T., Sackellares, J. C., Gilman, S., Mckeever, P. E., Troncoso, J. C., and Johnston, M. V. (1991). Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Ann. Neurol. 29:529–541.

    Google Scholar 

  • Mcnamara, J. O. (1999). Emerging insights into the genesis of epilepsy. Nature 399(Suppl.):A15–A22.

    Google Scholar 

  • Musshoff, U., Schüncke, U., Köhling, R., and Speckmann, E. J. (2000). Alternative splicing of the NMDAR1 glutamate receptor subunit in human temporal lobe epilepsy. Mol. Brain Res. 76:377–384.

    Google Scholar 

  • Ramírez, M., and Gutiérrez, R. (2001). Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Res. 917:139–146.

    Google Scholar 

  • Soghomonian, J.-J., and Chesselet, M.-F. (1992). Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse 11:124–133.

    Google Scholar 

  • Soghomonian, J.-J., Gonzales, C., and Chesselet, M.-F. (1992). Messenger RNAs encoding glutamate decarboxylase are differentially affected by nigrostriatal lesions in subpopulations of striatal neurons. Brain Res. 576:68–79.

    Google Scholar 

  • Sommer, B., and Seeburg, P. H. (1994). Glutamate receptor channels: Novel properties and new clones. Trends Pharmacol. Sci. 13:291–296.

    Google Scholar 

  • Ure, J. A., and Perassolo, M. (2000). Update on the pathophysiology of the epilepsies. J. Neurol. Sci. 177:1–17.

    Google Scholar 

  • Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C. E., and Reis, D. J. (1993). Antisense oligodeoxynucleotydes to NMDA-R1 receptor channel protect cortical neurons from excitoxicity and reduce focal ischaemic infarctions. Nature 363:260–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neder, L., Valente, V., Carlotti, C.G. et al. Glutamate NMDA Receptor Subunit R1 and GAD mRNA Expression in Human Temporal Lobe Epilepsy. Cell Mol Neurobiol 22, 689–698 (2002). https://doi.org/10.1023/A:1021852907068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021852907068

Navigation