Skip to main content

Advertisement

Log in

HMGB1-TLR4 Axis Plays a Regulatory Role in the Pathogenesis of Mesial Temporal Lobe Epilepsy in Immature Rat Model and Children via the p38MAPK Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The HMGB1-TLR4 axis is activated in adult mouse models of acute and chronic seizure. Nevertheless, whether HMGB1 was involved in the pathogenesis of mesial temporal lobe epilepsy (MTLE) remains unknown. In this study, we first measured the dynamic expression patterns of HMGB1 and TLR4 in the hippocampi of a rat model and in children with MTLE, as well as the levels of TNF-α and IL-1β. In addition, HMGB1 was added to mimic the process of inflammatory response in neurons. Neuronal somatic size and dendritic length were measured by immunohistochemistry and digital imaging. The results showed that the expression of HMGB1 and TLR4 as well as the levels of TNF-α and IL-1β were higher in the three stages of MTLE development in the rat model and in the children with MTLE. HMGB1 increased the levels of TNF-α and IL-1β, upregulated the protein level of p-p38MAPK and promoted the growth of cell somatic size and dendritic length in neurons. Pre-treatment with p38MAPK inhibitor SB203580 decreased the levels of TNF-α and IL-1β, while downregulation of TLR4 significantly reduced HMGB1-induced p38MAPK signaling pathway activation. These data demonstrated that the HMGB1-TLR4 axis may play an important role in the pathogenesis of MTLE via the p38MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abubakar A, Kariuki SM, Tumaini JD, Gona J, Katana K, Owen JA, Newton CR (2015) Community perceptions of developmental and behavioral problems experienced by children living with epilepsy on the Kenyan coast: a qualitative study. Epilepsy Behav 45:74–78

    Article  PubMed  PubMed Central  Google Scholar 

  2. Palleria C, Coppola A, Citraro R, Del Gaudio L, Striano S, De Sarro G, Russo E (2015) Perspectives on treatment options for mesial temporal lobe epilepsy with hippocampal sclerosis. Expert Opin Pharmacother 16:2355–2371

    Article  PubMed  Google Scholar 

  3. Zhang Y, Li Z, Gu J, Wang W, Shen H, Chen G, Wang X (2015) Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clin Sci (Lond) 129:1207–1223

    Article  CAS  Google Scholar 

  4. Toller G, Adhimoolam B, Rankin KP, Huppertz HJ, Kurthen M, Jokeit H (2015) Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy. Neuropsychologia 78:80–87

    Article  PubMed  Google Scholar 

  5. Sillanpaa M, Anttinen A, Rinne JO, Joutsa J, Sonninen P, Erkinjuntti M, Hermann B, Karrasch M, Saarinen M, Tiitta P, Shinnar S (2015) Childhood-onset epilepsy five decades later. A prospective population-based cohort study. Epilepsia 56:1774–1783

    Article  PubMed  Google Scholar 

  6. Busch RM, Lineweaver TT, Ferguson L, Haut JS (2015) Reliable change indices and standardized regression-based change score norms for evaluating neuropsychological change in children with epilepsy. Epilepsy Behav 47:45–54

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luoni C, Canevini MP, Capovilla G, De Sarro G, Galimberti CA, Gatti G, Guerrini R, La Neve A, Mazzucchelli I, Rosati E, Specchio LM, Striano S, Tinuper P, Perucca E (2015) A prospective study of direct medical costs in a large cohort of consecutively enrolled patients with refractory epilepsy in Italy. Epilepsia 56:1162–1173

    Article  PubMed  Google Scholar 

  8. Brennan GP, Dey D, Chen Y, Patterson KP, Magnetta EJ, Hall AM, Dube CM, Mei YT, Baram TZ (2016) Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep 14:2402–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamid KM, Nejati A, Shoja Z, Mollaei-Kandelousd Y, Doosti R, Mirshafiey A, Tafakhori A, Sahraian MA, Marashi SM (2016) Quantitative evaluation of BAFF, HMGB1, TLR 4 AND TLR 7 expression in patients with relapsing remitting multiple sclerosis. Iran J Allergy Asthma Immunol 15:75–81

    PubMed  Google Scholar 

  10. Su S, Wu J, Gong T, He K, Feng C, Zhang M, Li B, Xia X (2016) Inhibition of high mobility group box 1-toll-like receptor-4 signaling by glycyrrhizin contributes to the attenuation of cold ischemic injury of liver in a rat model. Transplant Proc 48:191–198

    Article  CAS  PubMed  Google Scholar 

  11. Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H (2016) TLR4-mediated NF-kappaB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 37:99–107

    PubMed  Google Scholar 

  12. Lee K, Chang Y, Song K, Park YY, Huh JW, Hong SB, Lim CM, Koh Y (2016) Associations between single nucleotide polymorphisms of high mobility group box 1 protein and clinical outcomes in korean sepsis patients. Yonsei Med J 57:111–117

    Article  CAS  PubMed  Google Scholar 

  13. Wang WJ, Yin SJ, Rong RQ (2015) PKR and HMGB1 expression and function in rheumatoid arthritis. Genet Mol Res 14:17864–17870

    Article  CAS  PubMed  Google Scholar 

  14. Ma L, Zeng J, Mo B, Wang C, Huang J, Sun Y, Yu Y, Liu S (2015) High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 7:1732–1741

    PubMed  PubMed Central  Google Scholar 

  15. Jiang WL, Xu Y, Zhang SP, Zhu HB, Hou J (2012) Tricin 7-glucoside protects against experimental cerebral ischemia by reduction of NF-kappaB and HMGB1 expression. Eur J Pharm Sci 45:50–57

    Article  CAS  PubMed  Google Scholar 

  16. Okuma Y, Date I, Nishibori M (2014) Anti-HMGB1 antibody therapy for traumatic brain injury and neuropathic pain. Nihon Yakurigaku Zasshi 143:5–9

    Article  CAS  PubMed  Google Scholar 

  17. Miyasho T, Nakamura K, Nomura S, Kawasako K, Nakade T, Yamada S, Yokota H (2011) High mobility group box 1 (HMGB1) protein is present in the cerebrospinal fluid of dogs with encephalitis. J Vet Med Sci 73:917–922

    Article  CAS  PubMed  Google Scholar 

  18. Kim J, Song J, Lee M (2015) Combinational delivery of HMGB1 A box and heparin for acute lung injury. J Control Release 213:e57

    Article  PubMed  Google Scholar 

  19. Ye L, Yang Y, Zhang X, Cai P, Li R, Chen D, Wei X, Xu H, Xiao J, Li X, Lin L, Zhang H (2016) The role of bFGF in the excessive activation of astrocytes is related to the inhibition of TLR4/NFkappaB signals. Int J Mol Sci 17:37

    Article  Google Scholar 

  20. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419

    Article  CAS  PubMed  Google Scholar 

  21. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  22. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  CAS  PubMed  Google Scholar 

  23. Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica E, Ravizza T, Vezzani A (2013) Receptor for advanced glycation endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis 58:102–114

    Article  CAS  PubMed  Google Scholar 

  24. Sowell MK, Youssef PE (2016) The comorbidity of migraine and epilepsy in children and adolescents. Semin Pediatr Neurol 23:83–91

    Article  PubMed  Google Scholar 

  25. Nascimento FA, Gatto LA, Silvado C, Mader-Joaquim MJ, Moro MS, Araujo JC (2016) Anterior temporal lobectomy versus selective amygdalohippocampectomy in patients with mesial temporal lobe epilepsy. Arq Neuropsiquiatr 74:35–43

    Article  PubMed  Google Scholar 

  26. Marchi N, Granata T, Janigro D (2014) Inflammatory pathways of seizure disorders. Trends Neurosci 37:55–65

    Article  CAS  PubMed  Google Scholar 

  27. Dube CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 30:7484–7494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Wang X, Niu X, Zhang H, He Z, Wang Y, Zhi W, Liu F (2016) Protective effects of nobiletin against endotoxic shock in mice through inhibiting TNF-alpha, IL-6, and HMGB1 and regulating NF-kappaB pathway. Inflammation 39:786–797

    Article  CAS  PubMed  Google Scholar 

  29. Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S, Nakajima T, Komiya S, Maruyama I (2003) High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 48:971–981

    Article  CAS  PubMed  Google Scholar 

  30. Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA, Friedman SG, Tracey KJ (1999) Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet 354:1446–1447

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, Czura CJ, Lee DC, Ward MF, Bruchfeld AN, Wang H, Lesser ML, Church AL, Litroff AH, Sama AE, Tracey KJ (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25:571–574

    Article  CAS  PubMed  Google Scholar 

  32. Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, Kobayashi A, Maruyama I, Yamada S, Hasegawa N, Soejima J, Koh H, Ishizaka A (2004) Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med 170:1310–1316

    Article  PubMed  Google Scholar 

  33. Yasuda T, Ueda T, Takeyama Y, Shinzeki M, Sawa H, Nakajima T, Ajiki T, Fujino Y, Suzuki Y, Kuroda Y (2006) Significant increase of serum high-mobility group box chromosomal protein 1 levels in patients with severe acute pancreatitis. Pancreas 33:359–363

    Article  CAS  PubMed  Google Scholar 

  34. Zare-Shahabadi A, Ashrafi MR, Shahrokhi A, Soltani S, Zoghi S, Soleimani F, Vameghi R, Badv RS, Rezaei N (2015) Single nucleotide polymorphisms of TNF-Alpha gene in febrile seizures. J Neurol Sci 356:153–156

    Article  CAS  PubMed  Google Scholar 

  35. Akassoglou K, Probert L, Kontogeorgos G, Kollias G (1997) Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158:438–445

    CAS  PubMed  Google Scholar 

  36. Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, Wagner AK (2015) IL-1beta associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 56:991–1001

    Article  CAS  PubMed  Google Scholar 

  37. Rotenberg A (2015) Commentary on IL-1beta associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 56:989–990

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xiao Z, Peng J, Yang L, Kong H, Yin F (2015) Interleukin-1beta plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 282:110–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

There is no funds to support this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Li.

Ethics declarations

Conflict of interest

No conflict of interest to declare.

Additional information

Weihong Yang and Jing Li have contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, J., Shang, Y. et al. HMGB1-TLR4 Axis Plays a Regulatory Role in the Pathogenesis of Mesial Temporal Lobe Epilepsy in Immature Rat Model and Children via the p38MAPK Signaling Pathway. Neurochem Res 42, 1179–1190 (2017). https://doi.org/10.1007/s11064-016-2153-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2153-0

Keywords

Navigation