Skip to main content
Log in

The Effect of Thermal Noise on the I-V Curves of High Inductance DC Squids in the Presence of Microwave Radiation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The effect of thermal noise on the I-V curves of DC SQUIDs in the presence or absence of microwave radiation is analyzed in detail in the frame of a unitary analytical approach based on the 2D Fokker–Planck equation. The results are particularly relevant for SQUIDs with inductances comparable or higher than the fluctuation threshold inductance LF = 0 /2π) 2/k B T (here kB is the Boltzmann constant, T is the absolute temperature, and Φ 0 is the flux quantum). This is the case of interest at 77 K in particular. A general analytical expression for the I-V's has been obtained that incorporates the system's operation in both cases: when it is microwave irradiated (the new device is called the Shapiro-Step SQUID) or not (the DC SQUID). That makes the analogy between the nonlinearities in the two cases straightforward. In the presence of microwave radiation the analytical expression describes the behavior of the Shapiro steps and related aspects for pumping microwave frequencies substantially larger than the characteristic frequency of the Josephson junctions, ωc = 2πIcR/Φ 0 (Ic and R are, respectively, the critical current and the shunt resistance of the Josephson junctions). In the absence of microwave radiation the analytical expression forms the basis for a significant development of the previously obtained results for the characteristics of DC SQUIDs having β<1(β = 2LIc/Φ 0 is the reduced inductance) and large values for the noise parameter Γ = 2πk B T/Ic Φ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).

    Google Scholar 

  2. C. Vanneste, C. C. Chi, W. J. Gallagher, A. W. Kleinsasser, S. I. Raider, and R. L. Sandstrom, J. Appl. Phys. 64, 242 (1988).

    Google Scholar 

  3. E. Heinz and P. Seidel, J. Low Temp. Phys. 106, 233 (1997).

    Google Scholar 

  4. V. A. Hlus and I. O. Kulik, J. Tech. Phys. XLV,No. 3, 449 (1975) (in Russian).

    Google Scholar 

  5. Y. Zhang, M. Muck, A. I. Braginski, and H. Topfer, Supercond. Sci. Tech. 7, 269 (1994).

    Google Scholar 

  6. Y. Zhang, H. Soltner, N. Wolters, W. Zander, J. Schubert, F. Ruders, M. Banzet, and A. I. Braginski, IEEE Trans. Appl. Supercond. 7, 2870 (1997)

    Google Scholar 

  7. Y. Zhang, W. Zander, J. Schubert, F. Ruders, H. Soltner, M. Banzet, N. Wolters, X. H. Zeng, and A. I. Braginski, Appl. Phys. Lett. 71, 704 (1997).

    Google Scholar 

  8. R. Cantor, L. P. Lee, M. Teepe, V. Vinetskiy, and J. Longo, IEEE Trans. Appl. Supercond. 5, 2927 (1995).

    Google Scholar 

  9. D. Drung, E. Dantsker, F. Ludwig, H. Koch, R. Kleiner, J. Clarke, S. Krey, D. Reimer, B. David, and O. Doessel, Appl. Phys. Lett. 68, 1856 (1996).

    Google Scholar 

  10. E. Dantsker, S. Tanaka, P.-A. Nilsson, R. Kleiner, and J. Clarke, Appl. Phys. Lett. 69, 4099 (1996).

    Google Scholar 

  11. B. Chesca, J. Low Temp. Phys. 110, 963 (1998).

    Google Scholar 

  12. K. Enpuku, G. Tokita, T. Maruo, and T. Minotani, J. Appl. Phys. 78, 3498 (1995).

    Google Scholar 

  13. B. Chesca, J. Low Temp. Phys. 112, 165 (1998).

    Google Scholar 

  14. B. Chesca, The effect of thermal fluctuations on the operation of DC SQUIDs at 77 K—a fundamental analytical approach, to be published in IEEE Trans. Appl. Supercond., 1999 Proceedings ASC 1998, Palm Spring Desert California, USA.

  15. D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and John Clarke, High transition temperature superconducting quantum interference devices, Rev. Mod. Phys. 71, 631 (1999).

    Google Scholar 

  16. T. Ryhänen, H. Seppä, R. Ilomoniemi, J. Knuutila, J. Low Temp. Phys. 76, 287 (1989).

    Google Scholar 

  17. H. A. Kramers, Physica 7, 284 (1940).

    Google Scholar 

  18. C. M. Falko, W. H. Parker, S. E. Trullinger, and Paul K. Hansma, Phys. Rev. B 10, 1865 (1974).

    Google Scholar 

  19. K. Barthel, D. Koelle, B. Chesca, A. I. Braginski, A. Marx, R. Gross, and R. Kleiner, Transfer function and thermal noise of YBCO dc SQUIDs operated under large thermal fluctuations, Appl. Phys. Lett. 74, 2209 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesca, B. The Effect of Thermal Noise on the I-V Curves of High Inductance DC Squids in the Presence of Microwave Radiation. Journal of Low Temperature Physics 116, 167–186 (1999). https://doi.org/10.1023/A:1021833600269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021833600269

Keywords

Navigation