Skip to main content
Log in

Thyroid Hormone Actions on Neural Cells

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. In addition to its role in cellular metabolic activity, thyroid hormone (TH) is critically involved in growth, development, and function of the central nervous system. In the brain, as in other structures, TH is described to exert its major action by the binding of L-3,5,3′-triiodothyronine (T3), considered as the bioactive form of the hormone, to nuclear thyroid hormone receptors (TR) that function as ligand-dependent transcription factors.

2. The transcription of numerous brain genes was indeed shown to be positively or negatively regulated by TH, turning these TR-mediated effects one explanation for the physiological effects of TH. In this context, the knowledge from TR-knockout studies provides some surprising results, since neonatal hypothyroidism is associated to more significant abnormalities than is TR deficiency. Some (nonexclusive) hypotheses include a permissive effect of TH, allowing derepression of unliganded-TR effects and non-TR-mediated effects of the hormone, further emphasizing the importance of a controlled accessibility of neural cells to TH.

3. On the other hand, T3 was demonstrated to directly act not only on neuronal but also on glial cells proliferation and differentiation, contributing to the harmonious development of the brain. Interestingly, in addition to these direct actions on neuronal and glial cells, several lines of evidence, notably developped in our laboratory, point out the role of thyroid hormone in neuronal–glial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abel, E. D., Boers, M. E., Pazos-Moura, C., Moura, E., Kaulbach, H., Zakaria, M., Lowell, B., Radovick, S., Liberman, M. C., and Wondisford, F. (1999). Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J. Clin. Invest. 104:291–300.

    Google Scholar 

  • Aizenman, Y., and de Vellis, J. (1987). Synergistic action of thyroid hormone, insulin and hydrocortisone on astrocyte differentiation. Brain Res. 414:301–308.

    Google Scholar 

  • Alvarez-Dolado, M., Iglesias, T., Rodriguez-Pena, A., Bernal, J., and Munoz, A. (1994). Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Brain Res. Mol. Brain Res. 27:249–257.

    Google Scholar 

  • Alvarez-Dolado, M., Ruiz, M., Del Rio, J. A., Alcantara, S., Burgaya, F., Sheldon, M., Nakajima, K., Bernal, J., Howell, B.W., Curran, T., Soriano, E., and Munoz, A. (1999). Thyroid hormone regulates reelin and dab1 expression during brain development. J. Neurosci. 19:6979–6993.

    Google Scholar 

  • Alvarez-Dolado, M., Figueroa, A., Kozlov, S., Sonderegger, P., Furley, A. J., and Munoz, A. (2001). Thyroid hormone regulates TAG-1 expression in the developing rat brain. Eur. J. Neurosci. 14:1209–1218.

    Google Scholar 

  • Amano, T., Leu, K., Yoshizato, K., and Shi, Y. B. (2002). Thyroid hormone regulation of a transcriptional coactivator in Xenopus laevis: Implication for a role in postembryonic tissue remodeling. Dev. Dyn. 223:526–535.

    Google Scholar 

  • Anderson, G. W., Larson, R. J., Oas, D. R., Sandhofer, C. R., Schwartz, H. L., Mariash, C. N., and Oppenheimer, J.H. (1998). Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene.Apotential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. J. Biol. Chem. 273:16391–16399.

    Google Scholar 

  • Balazs, R., Brooksbank, B.W., Davison, A. N., Richter,D., and Wilson, D. A. (1969). The effect of thyroid deficiency on myelination in the rat brain. J. Physiol. 201:28P–29P.

    Google Scholar 

  • Barakat-Walter, I. (1999). Role of thyroid hormones and their receptors in peripheral nerve regeneration. J. Neurobiol. 40:541–559.

    Google Scholar 

  • Barakat-Walter, I., Duc,C., Sarlieve, L. L., Puymirat, J., Dussault, J. H., and Droz, B. (1992).The expression of nuclear 3,5,30 triiodothyronine receptors is induced in Schwann cells by nerve transection. Exp. Neurol. 116:189–197.

    Google Scholar 

  • Barakat-Walter, I., Duc, C., and Puymirat, J. (1993). Changes in nuclear 3,5,30-triiodothyronine receptor expression in rat dorsal root ganglia and sciatic nerve during development: Comparison with regeneration. Eur. J. Neurosci. 5:319–326.

    Google Scholar 

  • Barradas, P. C., Ferraz, A. S., Ferreira, A. A., Daumas, R. P., and Moura, E. G. (2000). 2030Cyclic nucleotide 30phosphodiesterase immunohistochemistry shows an impairment on myelin compaction in hypothyroid rats. Int. J. Dev. Neurosci. 18:887–892.

    Google Scholar 

  • Barradas, P. C., Vieira, R. S., and de Freitas, M. S. (2001). Selective effect of hypothyroidism on expression of myelin markers during development. J. Neurosci. Res. 66:254–261.

    Google Scholar 

  • Barres, B. A., Lazar, M. A., and Raff, M. C. (1994).Anovel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120:1097–1108.

    Google Scholar 

  • Baumgartner, A. (2000). Thyroxine and the treatment of affective disorders: An overview of the results of basic and clinical research. Int. J. Neuropsychopharmacol. 3:149–165.

    Google Scholar 

  • Ben Hur, T., Rogister, B., Murray, K., Rougon, G., and Dubois-Dalcq, M. (1998). Growth and fate of PSA-NCAMC precursors of the postnatal brain. J. Neurosci. 18:5777–5788.

    Google Scholar 

  • Berbel, P., Auso, E., Garcia-Velasco, J. V., Molina, M. L., and Camacho, M. (2001). Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neuroscience 107:383–394.

    Google Scholar 

  • Berbel P., Guadano-Ferraz, A., Angulo, A., and Ramon, C. J. (1994). Role of thyroid hormones in the maturation of interhemispheric connections in rats. Behav. Brain Res. 64:9–14.

    Google Scholar 

  • Berbel, P., Guadano-Ferraz, A., Martinez, M., Quiles, J. A., Balboa, R., and Innocenti, G. M. (1993). Organization of auditory callosal connections in hypothyroid adult rats. Eur. J. Neurosci. 5:1465–1478.

    Google Scholar 

  • Bernal, J. (2002). Action of thyroid hormone in brain. J. Endocrinol. Invest 25:268–288.

    Google Scholar 

  • Bernal, J., and Nunez, J. (1995). Thyroid hormones and brain development. Eur. J. Endocrinol. 133:390–398.

    Google Scholar 

  • Bernal, J., and Pekonen, F. (1984). Ontogenesis of the nuclear 3,5,30-triiodothyronine receptor in the human fetal brain. Endocrinology 114:677–679.

    Google Scholar 

  • Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J., and Larsen, P. R. (2002). Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23:38–89.

    Google Scholar 

  • Bradley, D. J., Towle, H. C., and Young, W. S., III (1992). Spatial and temporal expression of alpha-and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J. Neurosci. 12:2288–2302.

    Google Scholar 

  • Braun, P. E., Sandillon, F., Edwards, A., Matthieu, J. M., and Privat, A. (1988). Immunocytochemical localization by electron microscopy of 2030-cyclic nucleotide 30-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci. 8:3057–3066.

    Google Scholar 

  • Burrow, G. N., Fisher, D. A., and Larsen, P. R. (1994). Maternal and fetal thyroid function. N. Engl. J. Med. 331: 1072–1078.

    Google Scholar 

  • Calloni, G.W., Alvarez-Silva, M., Vituri, C., and Trentin, A. G. (2001). Thyroid hormone deficiency alters extracellular matrix protein expression in rat brain. Brain Res. Dev. Brain Res. 126:121–124.

    Google Scholar 

  • Campagnoni, A. T., and Macklin, W. B. (1988). Cellular and molecular aspects of myelin protein gene expression. Mol. Neurobiol. 2:41–89.

    Google Scholar 

  • Carlson, D. J., Strait, K. A., Schwartz, H. L., and Oppenheimer, J. H. (1994). Immunofluorescent localization of thyroid hormone receptor isoforms in glial cells of rat brain. Endocrinology 135:1831–1836.

    Google Scholar 

  • Carlson, D. J., Strait, K. A., Schwartz, H. L., and Oppenheimer, J. H. (1996). Thyroid hormone receptor isoform content in cultured type 1 and type 2 astrocytes. Endocrinology 137:911–917.

    Google Scholar 

  • Cayrou, C., Denver, R. J., and Puymirat, J. (2002). Suppression of the basic transcription element-binding protein in brain neuronal cultures inhibits thyroid hormone-induced neurite branching. Endocrinology 143:2242–2249.

    Google Scholar 

  • Chamak, B., and Mallat, M. (1991). Fibronectin and laminin regulate the in vitro differentiation of microglial cells. Neuroscience 45:513–527.

    Google Scholar 

  • Chassande,O., Fraichard, A., Gauthier, K., Flamant, F., Legrand, C., Savatier, P., Laudet,V., and Samarut, J. (1997). Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol. Endocrinol. 11:1278–1290.

    Google Scholar 

  • Chen, J. D., and Li, H. (1998). Coactivation and corepression in transcriptional regulation by steroid/nuclear hormone receptors. Crit. Rev. Eukaryot. Gene Expr. 8:169–190.

    Google Scholar 

  • Clos, J., and Legrand, J. (1973). Effects of thyroid deficiency on the different cell populations of the cerebellum in the young rat. Brain Res. 63:450–455.

    Google Scholar 

  • Clos, J., Legrand, C., and Legrand, J. (1980). Effects of thyroid state on the formation and early morphological development of Bergmann glia in the developing rat cerebellum. Dev. Neurosci. 3:199–208.

    Google Scholar 

  • Collingwood, T. N., Urnov, F. D., and Wolffe, A. P. (1999). Nuclear receptors: Coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 23:255–275.

    Google Scholar 

  • Constant, E. L., de Volder, A. G., Ivanoiu, A., Bol, A., Labar, D., Seghers, A., Cosnard, G., Melin, J., and Daumerie, C. (2001). Cerebral blood flow and glucose metabolism in hypothyroidism: A positron emission tomography study. J. Clin. Endocrinol. Metab. 86:3864–3870.

    Google Scholar 

  • Crantz, F. R., Silva, J. E., and Larsen, P. R. (1982). An analysis of the sources and quantity of 3,5,30-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110:367–375.

    Google Scholar 

  • Croteau,W., Davey, J. C., Galton, V. A., and St. Germain, D. L. (1996). Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J. Clin. Invest 98:405–417.

    Google Scholar 

  • Curran,T., and D'Arcangelo,G. (1998). Role of reelin in the control of brain development. Brain Res.Brain Res.Rev. 26:285–294.

    Google Scholar 

  • D'Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23–31.

    Google Scholar 

  • Das, S., and Paul, S. (1994). Decrease in beta-adrenergic receptors of cerebral astrocytes in hypothyroid rat brain. Life Sci. 54:621–629.

    Google Scholar 

  • Davis, P. J., and Davis, F. B. (1996). Nongenomic actions of thyroid hormone. Thyroid 6:497–504.

    Google Scholar 

  • Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J., and Davis, F. B. (2000). Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem. 275:38032–38039.

    Google Scholar 

  • Denver, R. J., Ouellet, L., Furling, D., Kobayashi, A., Fujii-Kuriyama, Y., and Puymirat, J. (1999). Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J. Biol. Chem. 274:23128–23134.

    Google Scholar 

  • Dowling, A. L., Iannacone, E. A., and Zoeller, R. T. (2001). Maternal hypothyroidism selectively affects the expression of neuroendocrine-specific protein A messenger ribonucleic acid in the proliferative zone of the fetal rat brain cortex. Endocrinology 142:390–399.

    Google Scholar 

  • Dowling, A. L., Martz, G. U., Leonard, J. L., and Zoeller, R. T. (2000). Acute changes in maternal thyroid hormone induce rapid and transient changes in gene expression in fetal rat brain. J. Neurosci. 20:2255–2265.

    Google Scholar 

  • Durand, B., and Raff, M. (2000).Acell-intrinsic timer that operates during oligodendrocyte development. Bioessays 22:64–71.

    Google Scholar 

  • Escamez, M. J., Guadano-Ferraz, A., Cuadrado, A., and Bernal, J. (1999). Type 3 iodothyronine deiodinase is selectively expressed in areas related to sexual differentiation in the newborn rat brain. Endocrinology 140:5443–5446.

    Google Scholar 

  • Fagin, J. A., Fernandez-Mejia, C., and Melmed, S. (1989). Pituitary insulin-like growth factor-I gene expression: Regulation by triiodothyronine and growth hormone. Endocrinology 125:2385–2391.

    Google Scholar 

  • Faivre-Sarrailh, C., and Rabie, A. (1988). A lower proportion of filamentous to monomeric actin in the developing cerebellum of thyroid-deficient rats. Brain Res. 469:293–297.

    Google Scholar 

  • Farwell, A. P., DiBenedetto, D. J., and Leonard, J. L. (1993). Thyroxine targets different pathways of internalization of type II iodothyronine 50-deiodinase in astrocytes. J. Biol. Chem. 268:5055–5062.

    Google Scholar 

  • Farwell, A. P., and Dubord-Tomasetti, S. A. (1999). Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology 140:5014–5021.

    Google Scholar 

  • Farwell, A. P., Tranter, M. P., and Leonard, J. L. (1995). Thyroxine-dependent regulation of integrin– laminin interactions in astrocytes. Endocrinology 136:3909–3915.

    Google Scholar 

  • Ferreiro, B., Pastor, R., and Bernal, J. (1990). T3 receptor occupancy and T3 levels in plasma and cytosol during rat brain development. Acta Endocrinol. (Copenh) 123:95–99.

    Google Scholar 

  • Fierro-Renoy, J. F., Szuchet, S., Falcone, M., Macchia, E., and DeGroot, L. (1995). Three different thyroid hormone receptor isoforms are detected in a pure culture of ovine oligodendrocytes. Glia 14:322–328.

    Google Scholar 

  • Figueiredo, B.C., Almazan,G., Ma,Y., Tetzlaff,W., Miller, F.D., and Cuello, A.C. (1993). Gene expression in the developing cerebellum during perinatal hypo-and hyperthyroidism. Brain Res. Mol. Brain Res. 17:258–268.

    Google Scholar 

  • Forrest, D., Erway, L. C., Ng, L., Altschuler, R., and Curran, T. (1996a). Thyroid hormone receptor beta is essential for development of auditory function. Nat. Genet. 13:354–357.

    Google Scholar 

  • Forrest, D., Hallbook, F., Persson, H., and Vennstrom, B. (1991). Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes. EMBO J. 10:269-275.

    Google Scholar 

  • Forrest,D., Hanebuth, E., Smeyne, R. J., Everds, N., Stewart, C. L., Wehner, J. M., and Curran, T. (1996b). Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: Evidence for tissue-specific modulation of receptor function. EMBO J. 15:3006–3015.

    Google Scholar 

  • Forrest,D., Reh, T. A., and Rusch, A. (2002). Neurodevelopmental control by thyroid hormone receptors. Curr. Opin. Neurobiol. 12:49–56.

    Google Scholar 

  • Fujita, H., Tanaka, J., Toku, K., Tateishi, N., Suzuki, Y., Matsuda, S., Sakanaka, M., and Maeda, N. (1996). Effects of GM-CSF and ordinary supplements on the ramification of microglia in culture:Amorphometrical study. Glia 18:269–281.

    Google Scholar 

  • Fujiwara, K., Adachi, H., Nishio, T., Unno, M., Tokui, T., Okabe, M., Onogawa, T., Suzuki, T., Asano, N., Tanemoto, M., Seki, M., Shiiba, K., Suzuki, M., Kondo, Y., Nunoki, K., Shimosegawa, T., Iinuma, K., Ito, S., Matsuno, S., and Abe, T. (2001). Identification of thyroid hormone transporters in humans: Different molecules are involved in a tissue-specific manner. Endocrinology 142:2005–2012.

    Google Scholar 

  • Fukui, T., Hasegawa, Y., and Takenaka, H. (2001). Hyperthyroid dementia: Clinicoradiological findings and response to treatment. J. Neurol. Sci. 184:81–88.

    Google Scholar 

  • Garcia-Segura, L. M., Chowen, J. A., and Naftolin, F. (1996). Endocrine glia: Roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front. Neuroendocrinol. 17:180–211.

    Google Scholar 

  • Garza, R., Puymirat, J., and Dussault, J. H. (1990). Immunocytochemical localization of thyroid hormone nuclear receptors in cultured acetylcholinesterase-positive neurons: A correlation between the presence of thyroid hormone nuclear receptors and L-tri-iodothyronine morphological effects. Neuroscience 36:473–482.

    Google Scholar 

  • Gavaret, J. M., Toru-Delbauffe, D., Baghdassarian-Chalaye, D., Pomerance, M., and Pierre, M. (1991). Thyroid hormone action: Induction of morphological changes and protein secretion in astroglial cell cultures. Brain Res. Dev. Brain Res. 58:43–49.

    Google Scholar 

  • Gharami, K., and Das, S. (2000). Thyroid hormone-induced morphological differentiation and maturation of astrocytes are mediated through the beta-adrenergic receptor. J. Neurochem. 75:1962–1969.

    Google Scholar 

  • Giguere, A., Fortier, S., Beaudry,C., Gallo-Payet,N., and Bellabarba,D. (1996). Effect of thyroid hormones on G proteins in synaptosomes of chick embryo. Endocrinology 137:2558–2564.

    Google Scholar 

  • Giulian, D., and Baker, T. J. (1986). Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6:2163–2178.

    Google Scholar 

  • Glauser, L., and Barakat, W. I. (1997). Differential distribution of thyroid hormone receptor isoform in rat dorsal root ganglia and sciatic nerve in vivo and in vitro. J. Neuroendocrinol. 9:217–227.

    Google Scholar 

  • Goldowitz, D., and Hamre, K. (1998). The cells and molecules that make a cerebellum. Trends Neurosci. 21:375–382.

    Google Scholar 

  • Gomes, F. C., Garcia-Abreu, J., Galou, M., Paulin, D., and Moura Neto, V. (1999a). Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia 26:97–108.

    Google Scholar 

  • Gomes, F. C., Lima, F. R., Trentin, A. G., and Moura Neto, V. (2001). Thyroid hormone role in nervous system morphogenesis. Prog. Brain Res. 132:41–50.

    Google Scholar 

  • Gomes, F. C., Maia, C. G., de Menezes, J. R., and Moura Neto, V. (1999c). Cerebellar astrocytes treated by thyroid hormone modulate neuronal proliferation. Glia 25:247–255.

    Google Scholar 

  • Gomes, F. C., Paulin, D., and Moura Neto, V. (1999b). Glial fibrillary acidic protein (GFAP): Modulation by growth factors and its implication in astrocyte differentiation. Braz. J. Med.Biol. Res. 32:619–631.

    Google Scholar 

  • Gonzalez-Scarano, F., and Baltuch, G. (1999). Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22:219–240.

    Google Scholar 

  • Gordon, J. T., Kaminski, D. M., Rozanov, C. B., and Dratman, M. B. (1999). Evidence that 3,30,5-triiodothyronine is concentrated in and delivered from the locus coeruleus to its noradrenergic targets via anterograde axonal transport. Neuroscience 93:943–954.

    Google Scholar 

  • Gothe, S., Wang, Z., Ng, L., Kindblom, J. M., Barros, A. C., Ohlsson, C., Vennstrom, B., and Forrest, D. (1999). Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary–thyroid axis, growth, and bone maturation. Genes Dev. 13:1329–1341.

    Google Scholar 

  • Gould, E., Allan, M. D., and McEwen, B. S. (1990a). Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone. Brain Res. 525:327–329.

    Google Scholar 

  • Gould, E., and Butcher, L. L. (1989). Developing cholinergic basal forebrain neurons are sensitive to thyroid hormone. J. Neurosci. 9:3347–3358.

    Google Scholar 

  • Gould, E., Frankfurt, M., Westlind-Danielsson, A., and McEwen, B. S. (1990b). Developing forebrain astrocytes are sensitive to thyroid hormone. Glia 3:283–292.

    Google Scholar 

  • Gravel, C., and Hawkes, R. (1990). Maturation of the corpus callosum of the rat: I. Influence of thyroid hormones on the topography of callosal projections. J. Comp. Neurol. 291:128–146.

    Google Scholar 

  • Gravel,C., Sasseville, R., and Hawkes,R. (1990). Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons. J. Comp. Neurol. 291:147–161.

    Google Scholar 

  • Guadano-Ferraz, A., Obregon, M. J., St. Germain, D. L., and Bernal, J. (1997). The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc. Natl. Acad. Sci. U.S.A 94:10391–10396.

    Google Scholar 

  • Guissouma, H., Dupre, S. M., Becker, N., Jeannin, E., Seugnet, I., Desvergne, B., and Demeneix, B. A. (2002). Feedback on hypothalamic TRH transcription is dependent on thyroid hormone receptor N terminus. Mol. Endocrinol. 16:1652–1666.

    Google Scholar 

  • Hajos, F., Patel, A. J., and Balazs, R. (1973). Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Res. 50:387–401.

    Google Scholar 

  • Hallonet, M. E., Teillet, M. A., and Le Douarin, N. M. (1990). A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31.

    Google Scholar 

  • Hashimoto, K., Curty, F. H., Borges, P. P., Lee, C. E., Abel, E. D., Elmquist, J. K., Cohen, R. N., and Wondisford, F. E. (2001). An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc. Natl. Acad. Sci. U.S.A 98:3998–4003.

    Google Scholar 

  • Hedin-Pereira, C., deMoraes, E. C., Santiago, M. F., Mendez-Otero, R., and Lent, R. (2000). Migrating neurons cross a reelin-rich territory to form an organized tissue out of embryonic cortical slices. Eur. J. Neurosci. 12:4536–4540.

    Google Scholar 

  • Heisenberg, C. P., Thoenen, H., and Lindholm, D. (1992). Tri-iodothyronine regulates survival and differentiation of rat cerebellar granule neurons. Neuroreport 3:685–688.

    Google Scholar 

  • Hemmings, S. J., and Shuaib, A. (1998). Hypothyroidism-evoked shifts in hippocampal adrenergic receptors: Implications to ischemia-induced hippocampal damage. Mol.Cell Biochem. 185:161–169.

    Google Scholar 

  • Hennessey, J. V. (1996). Diagnosis and management of thyrotoxicosis. Am. Fam. Physician 54:1315–1324.

    Google Scholar 

  • Heppner, F. L., Skutella, T., Hailer, N. P., Haas, D., and Nitsch, R. (1998). Activated microglial cells migrate towards sites of excitotoxic neuronal injury inside organotypic hippocampal slice cultures. Eur. J. Neurosci. 10:3284–3290.

    Google Scholar 

  • Hodin, R. A., Lazar, M. A., Wintman, B. I., Darling, D. S., Koenig, R. J., Larsen, P. R., Moore, D. D., and Chin, W. W. (1989). Identification of a thyroid hormone receptor that is pituitary-specific. Science 244:76–79.

    Google Scholar 

  • Hsu, J. H., and Brent, G. A. (1998). Thyroid hormone receptor gene knockouts. Trends Endocrinol. Metab. 9:103–112.

    Google Scholar 

  • Hsu, J. H., Zavacki, A. M., Harney, J.W., and Brent, G. A. (1995). Retinoid-X receptor(RXR)differentially augments thyroidhormoneresponse in cell lines as a function of the response element and endogenous RXR content. Endocrinology 136:421–430.

    Google Scholar 

  • Iannacone, E. A., Yan, A.W., Gauger, K. J., Dowling, A. L., and Zoeller, R. T. (2002). Thyroid hormone exerts site-specific effects on SRC-1 and NCoR expression selectively in the neonatal rat brain. Mol. Cell Endocrinol. 186:49–59.

    Google Scholar 

  • Ibarrola, N., and Rodriguez-Pena, A. (1997). Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res. 752:285–293.

    Google Scholar 

  • Iniguez, M. A., Rodriguez-Pena, A., Ibarrola, N., Morreale, D. E., and Bernal, J. (1992). Adult rat brain is sensitive to thyroid hormone. Regulation of RC3/neurogranin mRNA. J. Clin. Invest. 90:554–558.

    Google Scholar 

  • Jameson, J. L. (1992). Thyroid hormone resistance: Pathophysiology at the molecular level. J. Clin. Endocrinol. Metab 74:708–711.

    Google Scholar 

  • Jameson, J. L., and Degroot, L. G. (1995). Mechanisms of thyroid hormone action. In DeGroot, L. G., and Saunders, W. B. (Eds.), Endocrinology, 3rd edn., W. B. Saunders Philadelphia, 583–601.

    Google Scholar 

  • Jeannin, E., Robyr, D., and Desvergne, B. (1998). Transcriptional regulatory patterns of the myelin basic protein and malic enzyme genes by the thyroid hormone receptors alpha1 and beta1. J. Biol. Chem. 273:24239–24248.

    Google Scholar 

  • Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., and McKay, R. D. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10:3129–3140.

    Google Scholar 

  • Kaul, M., Garden, G. A., and Lipton, S. A. (2001). Pathways to neuronal injury and apoptosis in HIVassociated dementia. Nature 410:988–994.

    Google Scholar 

  • Kincaid, A. E. (2001). Spontaneous circling behavior and dopamine neuron loss in a genetically hypothyroid mouse. Neuroscience 105:891–898.

    Google Scholar 

  • Koibuchi,N., and Chin, W.W. (2000). Thyroid hormone action and brain development.Trends Endocrinol. Metab 11: 123–128.

    Google Scholar 

  • Koibuchi,N., Fukuda, H., and Chin, W.W. (1999a). Promoter-specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum. Endocrinology 140:3955–3961.

    Google Scholar 

  • Koibuchi, N., Liu,Y., Fukuda, H., Takeshita, A., Yen, P. M., and Chin, W.W. (1999b).RORalpha augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology 140:1356–1364.

    Google Scholar 

  • Kulikov, A.V., and Jeanningro,R. (2001).The effects of hypothyroidism on5-HT1Aand5-HT2Areceptors and the serotonin transporter protein in the rat brain. Neurosci. Behav. Physiol. 31:445–449.

    Google Scholar 

  • Lawrence, W. D., Schoenl, M., and Davis, P. J. (1989). Stimulation in vitro of rabbit erythrocyte cytosol phospholipid-dependent protein kinase activity. A novel action of thyroid hormone. J. Biol. Chem. 264:4766–4768.

    Google Scholar 

  • Lebel, J. M., L'Herault, S., Dussault, J. H., and Puymirat, J. (1993). Thyroid hormone up-regulates thyroid hormone receptor beta gene expression in rat cerebral hemisphere astrocyte cultures. Glia 9:105–112.

    Google Scholar 

  • Lechan, R. M., Qi, Y., Berrodin, T. J., Davis, K. D., Schwartz, H. L., Strait, K. A., Oppenheimer, J. H., and Lazar, M. A. (1993). Immunocytochemical delineation of thyroid hormone receptor beta 2-like immunoreactivity in the rat central nervous system. Endocrinology 132:2461–2469.

    Google Scholar 

  • Legrand, J. (1967a). Analysis of the morphogenetic action of thyroid hormones on the cerebellum of young rats. Arch. Anat. Microsc. Morphol. Exp. 56:205–244.

    Google Scholar 

  • Legrand, J. (1967b).Variations, as a function of age, of the response of the cerebellum to the morphogenetic action of the thyroid in rats. Arch. Anat. Microsc. Morphol. Exp. 56:291–307.

    Google Scholar 

  • Legrand, J. (1982).Thyroid hormones and maturation of the nervous system. J. Physiol. (Paris) 78:603–652.

    Google Scholar 

  • Lemon, B. D., and Freedman, L. P. (1999). Nuclear receptor cofactors as chromatin remodelers. Curr. Opin. Genet. Dev. 9:499–504.

    Google Scholar 

  • Leonard, J. L., Farwell, A. P., Yen, P. M., Chin, W. W., and Stula, M. (1994). Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology 135:548–555.

    Google Scholar 

  • Li, W.W., Le Goascogne, C., Schumacher, M., Pierre, M., and Courtin, F. (2001). Type 2 deiodinase in the peripheral nervous system: Induction in the sciatic nerve after injury. Neuroscience 107:507–518.

    Google Scholar 

  • Liesi, P., Hager, G., Dodt, H. U., Seppala, I., and Zieglgansberger,W. (1995). Domain-specific antibodies against the B2 chain of laminin inhibit neuronal migration in the neonatal rat cerebellum. J. Neurosci. Res. 40:199–206.

    Google Scholar 

  • Liesi, P., Kirkwood, T., and Vaheri, A. (1986). Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain. Exp. Cell Res. 163:175–185.

    Google Scholar 

  • Lima, F. R., Gervais, A., Colin, C., Izembart, M., Neto, V. M., and Mallat, M. (2001). Regulation of microglial development: A novel role for thyroid hormone. J. Neurosci. 21:2028–2038.

    Google Scholar 

  • Lima, F. R., Goncalves,N., Gomes, F.C., de Freitas, M. S., and Moura, N.V. (1998).Thyroid hormone action on astroglial cells from distinct brain regions during development. Int. J. Dev. Neurosci. 16:19–27.

    Google Scholar 

  • Lima, F. R., Trentin, A. G., Rosenthal, D., Chagas, C., and Moura, N. V. (1997). Thyroid hormone induces protein secretion and morphological changes in astroglial cells with an increase in expression of glial fibrillary acidic protein. J. Endocrinol. 154:167–175.

    Google Scholar 

  • Lin, H. Y., Thacorf, H. R., Davis, F. B., and Davis, P. J. (1996). Potentiation by thyroxine of interferongamma-induced antiviral state requires PKA and PKC activities. Am. J. Physiol. 271:C1256–C1261.

    Google Scholar 

  • Lindholm, D., Castren, E., Tsoulfas, P., Kolbeck, R., Berzaghi, M. P., Leingartner, A., Heisenberg, C. P., Tessarollo, L., and Parada, L. F. (1993). Neurotrophin-3 induced by tri-iodothyronine in cerebellar granule cells promotes Purkinje cell differentiation. J. Cell Biol. 122:443–450.

    Google Scholar 

  • Lisboa, P. C., Curty, F. H., Moreira, R. M., Oliveira, K. J., and Pazos-Moura, C. C. (2001). Sex steroids modulate rat anterior pituitary and liver iodothyronine deiodinase activities. Horm. Metab. Res. 33:532–535.

    Google Scholar 

  • Liu, W., Brosnan, C. F., Dickson, D. W., and Lee, S. C. (1994). Macrophage colony-stimulating factor mediates astrocyte-induced microglial ramification in human fetal central nervous system culture. Am. J. Pathol. 145:48–53.

    Google Scholar 

  • Lizcano, F., Koibuchi, N., Fukuda, H., Dangond, F., and Chin, W. W. (2001). Cell type-specific roles of histone deacetylase in TR ligand-independent transcriptional repression. Mol. Cell Endocrinol. 172:13–20.

    Google Scholar 

  • Lucio, R. A., Garcia, J. V., Ramon, C. J., Pacheco, P., Innocenti, G. M., and Berbel, P. (1997). The development of auditory callosal connections in normal and hypothyroid rats. Cereb. Cortex 7:303–316.

    Google Scholar 

  • Luo, M., Puymirat, J., and Dussault, J. H. (1989). Immunocytochemical localization of nuclear 3,5,30-triiodothyronine (L-T3) receptors in astrocyte cultures. Brain Res. Dev. Brain Res. 46:131–136.

    Google Scholar 

  • Mallat, M., Calvo, C. F., and Dobbertin, A. (1996). Recruitment of brain macrophages: Roles of cytokines and extracellular matrix proteins produced by glial or neuronal cells. Braz. J. Med. Biol. Res. 29:1173–1177.

    Google Scholar 

  • Mallat, M., Lima, F. R., Gervais, A., Colin, C., and Moura, N., V (2002). New insights into the role of thyroid hormone in the CNS: The microglial track. Mol. Psychiatry 7:7–8.

    Google Scholar 

  • Mandel, S. J., Brent, G. A., and Larsen, P. R. (1993). Levothyroxine therapy in patients with thyroid disease. Ann. Intern. Med. 119:492–502.

    Google Scholar 

  • Mellstrom, B., Pipaon, C., Naranjo, J. R., Perez-Castillo, A., and Santos, A. (1994). Differential effect of thyroid hormone on NGFI-A gene expression in developing rat brain. Endocrinology 135:583–588.

    Google Scholar 

  • Moreau, X., Jeanningros, R., and Mazzola-Pomietto, P. (2001). Chronic effects of triiodothyronine in combination with imipramine on 5-HT transporter, 5-HT(1A) and 5-HT(2A) receptors in adult rat brain. Neuropsychopharmacology 24:652–662.

    Google Scholar 

  • Morreale, d. E. (2001). The role of thyroid hormone in fetal neurodevelopment. J. Pediatr. Endocrinol. Metab. 14 (Suppl. 6):1453–1462.

    Google Scholar 

  • Morte, B., Manzano, J., Scanlan, T., Vennstrom, B., and Bernal, J. (2002). Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc. Natl. Acad. Sci. U.S.A 99:3985–3989.

    Google Scholar 

  • Moura Neto, V. Trentin, A. G., Lima, F. R., Gomes, F. C., Da Silva, N. G., Chamas, L., Lins, C., Garcia-Abreu, J., Rosenthal, D., and Chagas, C. (1996). Effects of the thyroid hormone (T3) on astrocytes. Rev. Bras. Biol. 56:123–134.

    Google Scholar 

  • Muller, Y., Rocchi, E., Lazaro, J. B., and Clos, J. (1995). Thyroid hormone promotes BCL-2 expression and prevents apoptosis of early differentiating cerebellar granule neurons. Int. J. Dev. Neurosci. 13:871–885.

    Google Scholar 

  • Munoz, A., Rodriguez-Pena, A., Perez-Castillo, A., Ferreiro, B., Sutcliffe, J. G., and Bernal, J. (1991). Effects of neonatal hypothyroidism on rat brain gene expression. Mol. Endocrinol. 5:273–280.

    Google Scholar 

  • Murray, K., and Dubois-Dalcq, M. (1997). Emergence of oligodendrocytes from human neural spheres. J. Neurosci. Res. 50:146–156.

    Google Scholar 

  • Nanto-Salonen, K., Glasscock, G. F., and Rosenfeld, R. G. (1991). The effects of thyroid hormone on insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) expression in the neonatal rat: Prolonged high expression of IGFBP-2 in methimazole-induced congenital hypothyroidism. Endocrinology 129:2563–2570.

    Google Scholar 

  • Narumi, S., Kimelberg, H. K., and Bourke, R. S. (1978). Effects of norepinephrine on the morphology and some enzyme activities of primary monolayer cultures from rat brain. J. Neurochem. 31:1479–1490.

    Google Scholar 

  • Neveu, I., and Arenas, E. (1996). Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J. Cell Biol. 133:631–646.

    Google Scholar 

  • Ng, L., Rusch, A., Amma, L. L., Nordstrom, K., Erway, L. C., Vennstrom, B., and Forrest, D. (2001). Suppression of the deafness and thyroid dysfunction in Thrb-null mice by an independent mutation in the Thra thyroid hormone receptor alpha gene. Hum. Mol. Genet. 10:2701–2708.

    Google Scholar 

  • Nicholson, J. L., and Altman, J. (1972a). Synaptogenesis in the rat cerebellum: Effects of early hypo-and hyperthyroidism. Science 176:530–532.

    Google Scholar 

  • Nicholson, J. L., and Altman, J. (1972b). The effects of early hypo-and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 44:13–23.

    Google Scholar 

  • Nicholson, J. L., and Altman, J. (1972c).The effects of early hypo-and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res. 44:25–36.

    Google Scholar 

  • O'Malley, B. (1990). The steroid receptor superfamily: More excitement predicted for the future. Mol. Endocrinol. 4:363–369.

    Google Scholar 

  • Oomen, H. A., Schipperijn, A. J., and Drexhage, H. A. (1996). The prevalence of affective disorder and in particular of a rapid cycling of bipolar disorder in patients with abnormal thyroid function tests. Clin. Endocrinol. (Oxf) 45:215–223.

    Google Scholar 

  • Oppenheimer, J. H., and Schwartz, H. L. (1997). Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev. 18:462–475.

    Google Scholar 

  • Oppenheimer, J. H., Schwartz, H. L., and Surks, M. I. (1974). Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: Liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology 95:897–903.

    Google Scholar 

  • Ortiga-Carvalho, T. M., Oliveira, K. J., Soares, B. A., and Pazos-Moura, C. C. (2002). The role of leptin in the regulation of TSH secretion in the fed state: In vivo and in vitro studies. J. Endocrinol. 174:121–125.

    Google Scholar 

  • Paul, S., Das, S., Poddar, R., and Sarkar, P. K. (1996). Role of thyroid hormone in the morphological differentiation and maturation of astrocytes: Temporal correlation with synthesis and organization of actin. Eur. J. Neurosci. 8:2361–2370.

    Google Scholar 

  • Pearlman, A. L., Faust, P. L., Hatten, M. E., and Brunstrom, J. E. (1998). New directions for neuronal migration. Curr. Opin. Neurobiol. 8:45–54.

    Google Scholar 

  • Perez-Castillo, A., Bernal, J., Ferreiro, B., and Pans, T. (1985). The early ontogenesis of thyroid hormone receptor in the rat fetus. Endocrinology 117:2457–2461.

    Google Scholar 

  • Perez-Juste, G., Garcia-Silva, S., and Aranda, A. (2000). An element in the region responsible for premature termination of transcription mediates repression of c-myc gene expression by thyroid hormone in neuroblastoma cells. J. Biol. Chem. 275:1307–1314.

    Google Scholar 

  • Perry, V. H., Lawson, L. J., and Reid, D. M. (1994). Biology of the mononuclear phagocyte system of the central nervous system and HIV infection. J. Leukoc. Biol. 56:399–406.

    Google Scholar 

  • Pinna, G., Brodel, O., Visser, T., Jeitner, A., Grau, H., Eravci, M., Meinhold, H., and Baumgartner, A. (2002). Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 143:1789–1800.

    Google Scholar 

  • Pombo, P. M., Barettino, D., Ibarrola, N., Vega, S., and Rodriguez-Pena, A. (1999). Stimulation of the myelin basic protein gene expression by 9-cis-retinoic acid and thyroid hormone: Activation in the context of its native promoter. Brain Res. Mol. Brain Res. 64:92–100.

    Google Scholar 

  • Porterfield, S. P., and Hendrich, C. E. (1993). The role of thyroid hormones in prenatal and neonatal neurological development—Current perspectives. Endocr. Rev. 14:94–106.

    Google Scholar 

  • Puymirat, J., and Faivre-Bauman, A. (1986). Evolution of triiodothyronine nuclear binding sites in hypothalamic serum-free cultures: Evidence for their presence in neurons and astrocytes. Neurosci. Lett. 68:299–304.

    Google Scholar 

  • Puymirat, J., Luo, M., and Dussault, J. H. (1989). Immunocytochemical localization of thyroid hormone nuclear receptors in cultured hypothalamic dopaminergic neurons. Neuroscience 30:443–449.

    Google Scholar 

  • Rachez, C., Lemon, B. D., Suldan, Z., Bromleigh, V., Gamble, M., Naar, A. M., Erdjument-Bromage, H., Tempst, P., and Freedman, L. P. (1999). Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398:824–828.

    Google Scholar 

  • Rahaman, S. O., Ghosh, S., Mohanakumar, K. P., Das, S., and Sarkar, P. K. (2001). Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosci. Res. 40:273–279.

    Google Scholar 

  • Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145:61–83.

    Google Scholar 

  • Refetoff, S., DeWind, L. T., and DeGroot, L. J. (1967). Familial syndrome combining deaf–mutism, stuppled epiphyses, goiter and abnormally high PBI: Possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab. 27:279–294.

    Google Scholar 

  • Refetoff, S., Weiss, R. E., and Usala, S. J. (1993). The syndromes of resistance to thyroid hormone. Endocr. Rev. 14:348–399.

    Google Scholar 

  • Reichardt, L. F., and Tomaselli, K. J. (1991). Extracellular matrix molecules and their receptors: Functions in neural development. Annu. Rev. Neurosci. 14:531–570.

    Google Scholar 

  • Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibanez, C. F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron21:305–315.

    Google Scholar 

  • Rodriguez-Pena, A., Ibarrola, N., Iniguez, M. A., Munoz, A., and Bernal, J. (1993). Neonatal hypothyroidism affects the timely expression of myelin-associated glycoprotein in the rat brain. J. Clin. Invest 91:812–818.

    Google Scholar 

  • Roeder, L. M., Williams, I. B., and Tildon, J. T. (1985). Glucose transport in astrocytes: Regulation by thyroid hormone. J. Neurochem. 45:1653–1657.

    Google Scholar 

  • Rogister, B., Ben Hur, T., and Dubois-Dalcq, M. (1999). From neural stem cells to myelinating oligodendrocytes. Mol. Cell Neurosci. 14:287–300.

    Google Scholar 

  • Rozanov, C. B., and Dratman, M. B. (1996). Immunohistochemical mapping of brain triiodothyronine reveals prominent localization in central noradrenergic systems. Neuroscience 74:897–915.

    Google Scholar 

  • Ruel, J., and Dussault, J. H. (1985). Triiodothyronine increases glutamine synthetase activity in primary cultures of rat cerebellum. Brain Res. 353:83–88.

    Google Scholar 

  • Ruiz-Marcos, A., Cartagena, A. P., Garcia, G. A., Escobar, D. R., and Morreale, D.E. (1988). Rapid effects of adult-onset hypothyroidism on dendritic spines of pyramidal cells of the rat cerebral cortex. Exp. Brain Res. 73:583–588.

    Google Scholar 

  • Ruiz-Marcos, A., Sanchez-Toscano, F., Escobar, D. R., and Morreale, D. E. (1980). Reversible morphological alterations of cortical neurons in juvenile and adult hypothyroidism in the rat. Brain Res. 185:91–102.

    Google Scholar 

  • Ruiz-Marcos, A., Sanchez-Toscano, F., Obregon, M. J., Escobar, D. R., and Morreale, D.E. (1982). Thyroxine treatment and recovery of hypothyroidism-induced pyramidal cell damage. Brain Res. 239:559–574.

    Google Scholar 

  • Safran, M., Farwell, A. P., and Leonard, J. L. (1992). Thyroid hormone-dependent redistribution of the 55-kilodalton monomer of protein disulfide isomerase in cultured glial cells. Endocrinology 131:2413–2418.

    Google Scholar 

  • Sandhofer, C., Schwartz, H. L., Mariash, C. N., Forrest, D., and Oppenheimer, J. H. (1998). Beta receptor isoforms are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice. Mol. Cell Endocrinol. 137:109–115.

    Google Scholar 

  • Santini, F., Pinchera, A., Ceccarini,G., Castagna, M., Rosellini,V., Mammoli,C., Montanelli, L., Zucchi,V., Chopra, I. J., and Chiovato, L. (2001). Evidence for a role of the type III-iodothyronine deiodinase in the regulation of 3,5,30-triiodothyronine content in the human central nervous system. Eur. J. Endocrinol. 144:577–583.

    Google Scholar 

  • Sap, J., Munoz, A., Schmitt, J., Stunnenberg, H., and Vennstrom, B. (1989). Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 340:242–244.

    Google Scholar 

  • Schulman, I. G., Juguilon, H., and Evans, R. M. (1996). Activation and repression by nuclear hormone receptors: Hormone modulates an equilibrium between active and repressive states. Mol. Cell Biol. 16:3807–3813.

    Google Scholar 

  • Schwartz, H. L., Ross, M. E., and Oppenheimer, J. H. (1997). Lack of effect of thyroid hormone on late fetal rat brain development. Endocrinology 138:3119–3124.

    Google Scholar 

  • Schwartz, H. L., Strait, K. A., Ling, N. C., and Oppenheimer, J. H. (1992). Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J. Biol. Chem. 267:11794–11799.

    Google Scholar 

  • Shain,W., Forman, D. S., Madelian,V., and Turner, J.N. (1987). Morphology of astroglial cells is controlled by beta-adrenergic receptors. J. Cell Biol. 105:2307–2314.

    Google Scholar 

  • Sheldon, M., Rice, D. S., D'Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733.

    Google Scholar 

  • Shibata, H., Spencer, T. E., Onate, S. A., Jenster, G., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1997). Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog. Horm. Res. 52:141–164.

    Google Scholar 

  • Shupnik, M. A. (2000). Thyroid hormone suppression of pituitary hormone gene expression. Rev. Endocr. Metab. Disord. 1:35–42.

    Google Scholar 

  • Siddiq, A., Miyazaki, T., Takagishi,Y., Kanou,Y., Hayasaka, S., Inouye, M., Seo, H., and Murata,Y. (2001). Expression of ZAKI-4 messenger ribonucleic acid in the brain during rat development and the effect of hypothyroidism. Endocrinology 142:1752–1759.

    Google Scholar 

  • Siegrist-Kaiser, C. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M., and Leonard, J. L. (1990). Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J. Biol. Chem. 265:5296–5302.

    Google Scholar 

  • Smith, J. W., Evans, A. T., Costall, B., and Smythe, J. W. (2002). Thyroid hormones, brain function and cognition: A brief review. Neurosci. Biobehav. Rev. 26:45–60.

    Google Scholar 

  • Tejani-Butt, S. M., and Yang, J. (1994).Atime course of altered thyroid states on the noradrenergic system in rat brain by quantitative autoradiography. Neuroendocrinology 59:235–244.

    Google Scholar 

  • Thompson, C. C. (1996). Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J. Neurosci. 16:7832–7840.

    Google Scholar 

  • Thompson, C. C., and Bottcher, M. C. (1997). The product of a thyroid hormone-responsive gene interacts with thyroid hormone receptors. Proc. Natl. Acad. Sci. U.S.A 94:8527–8532.

    Google Scholar 

  • Thompson, C. C., Weinberger, C., Lebo, R., and Evans, R. M. (1987). Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237:1610–1614.

    Google Scholar 

  • Trentin, A. G., Alvarez-Silva, M., and Moura Neto, V. (2001). Thyroid hormone induces cerebellar astrocytes and C6 glioma cells to secrete mitogenic growth factors. Am. J. Physiol Endocrinol. Metab 281:E1088–E1094.

    Google Scholar 

  • Trentin, A.G., Gomes, F.C., Lima, F. R., and Moura Neto, V. (1998). Thyroid hormone acting on astrocytes in culture. In Vitro Cell Dev. Biol. Anim. 34:280–282.

    Google Scholar 

  • Trentin, A. G., and Moura Neto, V. (1995). T3 affects cerebellar astrocyte proliferation, GFAP and fibronectin organization. Neuroreport 6:293–296.

    Google Scholar 

  • Trentin, A. G., Rosenthal, D., and Moura Neto, V. (1995). Thyroid hormone and conditioned medium effects on astroglial cells from hypothyroid and normal rat brain: Factor secretion, cell differentiation, and proliferation. J. Neurosci. Res. 41:409–417.

    Google Scholar 

  • Tu, H. M., Legradi, G., Bartha, T., Salvatore, D., Lechan, R. M., and Larsen, P. R. (1999). Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology 140:784–790.

    Google Scholar 

  • Vara, H., Martinez, B., Santos, A., and Colino, A. (2002). Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience 110:19–28.

    Google Scholar 

  • Vargiu, P., Morte, B., Manzano, J., Perez, J., de Abajo, R., Gregor, S. J., and Bernal, J. (2001). Thyroid hormone regulation of rhes, a novel Ras homolog gene expressed in the striatum. Brain Res. Mol. Brain Res. 94:1–8.

    Google Scholar 

  • Voinesco, F., Glauser, L., Kraftsik, R., and Barakat-Walter, I. (1998). Local administration of thyroid hormones in silicone chamber increases regeneration of rat transected sciatic nerve. Exp. Neurol. 150:69–81.

    Google Scholar 

  • Vulsma, T., Gons, M. H., and de Vijlder, J. J. (1989). Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N. Engl. J. Med. 321:13–16.

    Google Scholar 

  • Wang, S., Sdrulla, A. D., diSibio, G., Bush, G., Nofziger, D., Hicks, C., Weinmaster, G., and Barres, B. A. (1998). Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75.

    Google Scholar 

  • Wegiel, J., Wisniewski, H. M., Dziewiatkowski, J., Tarnawski, M., Kozielski, R., Trenkner, E., and Wiktor-Jedrzejczak, W. (1998). Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice. Brain Res. 804:135–139.

    Google Scholar 

  • Wiersinga, W. M. (2001). Thyroid hormone replacement therapy. Horm. Res. 56 (Suppl. 1):74–81.

    Google Scholar 

  • Wikstrom, L., Johansson, C., Salto, C., Barlow, C., Campos, B. A., Baas, F., Forrest, D., Thoren, P., and Vennstrom, B. (1998). Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 17:455–461.

    Google Scholar 

  • Williams, G.R. (2000). Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol. Cell Biol. 20:8329–8342.

    Google Scholar 

  • Yusta, B., Besnard, F., Ortiz-Caro, J., Pascual, A., Aranda, A., and Sarlieve, L. (1988). Evidence for the presence of nuclear 3,5,30-triiodothyronine receptors in secondary cultures of pure rat oligodendrocytes. Endocrinology 122:2278–2284.

    Google Scholar 

  • Zou, L., Hagen, S. G., Strait, K. A., and Oppenheimer, J. H. (1994). Identification of thyroid hormone response elements in rodent Pcp-2, a developmentally regulated gene of cerebellar Purkinje cells. J. Biol. Chem. 269:13346–13352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, S., Neto, V.M. Thyroid Hormone Actions on Neural Cells. Cell Mol Neurobiol 22, 517–544 (2002). https://doi.org/10.1023/A:1021828218454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021828218454

Navigation