Skip to main content

Deiodinase and Brain Development

  • Chapter
  • First Online:
Thyroid Hormone Disruption and Neurodevelopment

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 788 Accesses

Abstract

Thyroid hormone receptors are enriched in neurons which are the primary target of T3 actions. Type 2 iodothyronine deiodinase (D2), which catalyzes conversion of thyroxine (T4) to 3,5,3′-triiodothyronine (T3), is expressed predominantly in glial cells, and type 3 iodothyronine deiodinase (D3), which catalyzes conversion of T4 to 3,3′,5′-triiodothyronine (rT3) and T3 to 3,3′-diiodothyronine (T2), is expressed in neurons. Thyroid hormone metabolism by D2 and D3 plays important roles in brain function and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Auso E, Lavado-Autric R, Cuevas E, Escobar del Rey F et al (2004) A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 145:4037–4047

    Article  CAS  PubMed  Google Scholar 

  • Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259

    Article  CAS  PubMed  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  CAS  PubMed  Google Scholar 

  • Calvo R, Obregon MJ, Ruiz de Ona C et al (1990) Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not 3,5,3′-triiodothyronine in the protection of the fetal brain. J Clin Invest 86:889–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo RM, Jauniaux E, Gulbis B et al (2002) Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab 87:1768–1777

    Article  CAS  PubMed  Google Scholar 

  • Chan S, Kachilele S, McCabe CJ et al (2002) Early expression of thyroid hormone deiodinase and receptors in human fetal brain cortex. Brain Res Dev Brain Res 138:109–116

    Article  CAS  PubMed  Google Scholar 

  • Crantz FR, Silva JE, Larsen PR (1982) An analysis of the sources and quality of 3,5,3′-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110:367–375

    Article  CAS  PubMed  Google Scholar 

  • Darras VM, Houbrechts AM, Van Herck SLJ (2015) Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim Biophys Acta 1849(2):130–141. doi:10.1016/j.bbagrm.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  • DeLong GR, Stanbury JB, Fierro-Benitez R (1985) Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol 27:317–324

    Article  CAS  PubMed  Google Scholar 

  • Freitas BC, Gereben B, Castillo M et al (2010) Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 120:2206–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galton VA (2005) The roles of the iodothyronine deiodinases in mammalian development. Thyroid 15:823–834

    Article  CAS  PubMed  Google Scholar 

  • Galton VA, Wood ET, St. Germain EA et al (2007) Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148:3080–3088

    Article  CAS  PubMed  Google Scholar 

  • Gereben B, Zavacki AM, Ribich S et al (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29:898–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinoer D (2001) Pregnancy and iodine. Thyroid 11:471–481

    Article  CAS  PubMed  Google Scholar 

  • Guadano-Ferraz A, Obregon MJ, St. Germain DL et al (1997) The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A 94:10391–10396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez A, Martinez ME, Fiering S et al (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez A, Quignodon L, Martinez ME et al (2010) Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology 151:5550–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez A, Morte B, Belinchón MM et al (2012) Critical role of type 2 and 3 deiodinases in the negative regulation of gene expression by T3 in the mouse cerebral cortex. Endocrinology 153:2919–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn S, Heuer H (2010) Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol 315:19–26

    Article  CAS  PubMed  Google Scholar 

  • Hosoi Y, Murakami M, Mizuma H et al (1999) Expression and regulation of type 2 iodothyronine deiodinase in cultured human skeletal muscle cells. J Clin Endocrinol Metab 84:3293–3300

    CAS  PubMed  Google Scholar 

  • Kester MH, Martines de Mensa R, Obregon MJ et al (2004) Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 89:3117–3128

    Article  CAS  PubMed  Google Scholar 

  • Koibuchi N, Jingu H, Iwasaki T et al (2003) Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2:279–289

    Article  CAS  PubMed  Google Scholar 

  • LaFranchi SH, Austin J (2007) How should we be treating children with congenital hypothyroidism? J Pediatr Endocrinol Metab 20:559–578

    Article  CAS  PubMed  Google Scholar 

  • Lavado-Autric R, Auso E, Garcia-Velasco JV et al (2003) Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 111:1073–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuma H, Murakami M, Mori M (2001) Thyroid hormone activation in human vascular smooth muscle cells: expression of type 2 iodothyronine deiodinase. Circ Res 88:313–318

    Article  CAS  PubMed  Google Scholar 

  • Morreale de Escobar G, Obregon MJ, Escobar Del Rey F (2004) Role of thyroid hormone during early brain development. Eur J Endocrinol 151(Suppl 3):U25–U37

    Article  CAS  PubMed  Google Scholar 

  • Morte B, Bernal J (2014) Thyroid hormone action: astrocyte-neuron communication. Front Endocrinol 5:82. doi:10.3389/fendo.2014.00082

    Article  Google Scholar 

  • Murakami M, Araki O, Morimura T et al (2000) Expression of type 2 iodothyronine deiodinase in brain tumors. J Clin Endocrinol Metab 85:4403–4406

    CAS  PubMed  Google Scholar 

  • Murakami M, Araki O, Hosoi Y et al (2001) Expression and regulation of type 2 iodothyronine deiodinase in human thyroid gland. Endocrinology 142:2961–2967

    Article  CAS  PubMed  Google Scholar 

  • Ng L, Goodyear RJ, Woods CA et al (2004) Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A 101:3474–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Hernandez A, He W et al (2009) A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150:1952–1960

    Article  CAS  PubMed  Google Scholar 

  • Ng L, Lyubarsky A, Nikonov SS et al (2010) Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J Neurosci 30:3347–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Kelley MW, Forrest D (2013) Making sense with thyroid hormone-the role of T3 in auditory development. Nat Rev Endocrinol 9:296–307

    Article  CAS  PubMed  Google Scholar 

  • Obregon MJ, Calvo RM, Escobar del Rey F et al (2007) Ontogenesis of thyroid function and interactions with maternal function. Endocr Dev 10:86–98

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Landers K, Li H et al (2011) Thyroid hormones and fetal neurological development. J Endocrinol 209:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pearce EN (2009) What do we know about iodine supplementation in pregnancy? J Clin Endocrinol Metab 94:3188–3190

    Article  CAS  PubMed  Google Scholar 

  • Peeters RP, Hernandez A, Ng L et al (2013) Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 154:550–561

    Article  CAS  PubMed  Google Scholar 

  • Porterfield SP, Hendrich CE (1993) The role of thyroid hormones in prenatal and neonatal neurological development-current perspectives. Endocr Rev 14:94–106

    CAS  PubMed  Google Scholar 

  • Schneider MJ, Fiering SN, Pallud SE et al (2001) Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15:2137–2148

    Article  CAS  PubMed  Google Scholar 

  • Schroeder AC, Privalsky ML (2014) Thyroid hormones, T3 and T4, in the brain. Front Endocrinol 5:40. doi:10.3389/fendo.2014.00040

    Article  Google Scholar 

  • St. Germain DL, Galton VA, Hernandez A (2009) Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 150(3):1097–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu HM, Kim SW, Salvatore D et al (1997) Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Williams GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20:784–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murakami, M. (2016). Deiodinase and Brain Development. In: Koibuchi, N., Yen, P.M. (eds) Thyroid Hormone Disruption and Neurodevelopment. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3737-0_2

Download citation

Publish with us

Policies and ethics