Skip to main content
Log in

Synthesis and Characterization of Antimony Tartrate for Ceramic Precursors

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Synthesis and characterization of antimony tartrate used as a precursor of ceramic powders obtained by Pechini's method were carried out. Antimony tartrate was chosen as a substitute for the antimony citrate commonly used in this chemical processing, because of difficulties in preparing the citrate. FTIR and TGA/DTA analysis showed that antimony tartrate, H2[Sb2(C4H2O6)2], forms a polymeric structure. The procedure described indicates that the antimony chelate obtained is adequate for Pechini's method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. P. Pechini, U.S. patent 3,330,697 (1967).

  2. J. F. McAleer, P. T. Moseley, J. O. W. Norris, and D. E. Williams, J. Chem. Soc. Faraday Trans. 83, 1323 (1987).

    Article  Google Scholar 

  3. G. S. V. Coles, G. Williams, and B. Smith, Sensors Actuators B 3, 7 (1991).

    Article  Google Scholar 

  4. E. R. Leite, M. A. L. Nobre, E. Longo, and J. A. Varela, J. Mater. Sci. 31, 5391 (1996).

    Google Scholar 

  5. I. O. Mazali, Efeito do método de preparação e da concentração de antimônio na sinterização e propriedades elétricas de cerâmicas densas á base de dióxido de estanho, Master's thesis (Universidade Estadual Paulista, Unesp, Araraquara, SP, Brasil, 1997).

    Google Scholar 

  6. G. Brauer, in Handbook of Preparative Inorganic Chemistry, 2nd ed. (Academic Press, New York and London, 1963), pp. 611, 615.

    Google Scholar 

  7. S. Badavari (ed.), The Merck Index, 11th ed. (Merck & Co., Rahway, NJ, 1989), pp. 735–736.

    Google Scholar 

  8. P. A. Lessing, Ceram. Bull. 68, 1002 (1989).

    Google Scholar 

  9. R. K. Iyer, S. G. Deshpande, and G. S. Rao, J. Inorg. Nucl. Chem. 34, 3351 (1972).

    Article  Google Scholar 

  10. E. Chinoporos and N. Papathanasopoulos, J. Phys. Chem. 65(9), 1643 (1961).

    Google Scholar 

  11. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 3rd ed. (Wiley & Sons, New York, 1974).

    Google Scholar 

  12. D. S. Sagatys, G. Smith, D. E. Lynch, and C. H. L. Kennard, J. Chem. Soc. Dalton Trans. 361 (1991).

  13. J. R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds (Plenum Press, New York, 1971), p. 73.

    Google Scholar 

  14. T. W. G. Solomons, Organic Chemistry, 5th ed. (Wiley & Sons, New York, 1992).

    Google Scholar 

  15. M. Zaharescu, S. Mihaiu, S. Zuca, and K. Matiasovsky, J. Mater. Sci. 26, 1666 (1991).

    Article  Google Scholar 

  16. P. Pascal, Nouveau Traité de Chimie Minérale, Vol. 11 (Masson et Cie, Paris, 1958), pp. 591–664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazali, I.O., Las, W.C. & Cilense, M. Synthesis and Characterization of Antimony Tartrate for Ceramic Precursors. Journal of Materials Synthesis and Processing 7, 387–391 (1999). https://doi.org/10.1023/A:1021822115116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021822115116

Navigation