Skip to main content
Log in

Thermodynamic Feasibility of SHS of SOFC Materials

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Thermodynamic analysis predicts and experiments confirm that La1−x Sr x CrO3 powder, used to manufacture interconnect components in solid oxide fuel cells (SOFC), may be prepared via SHS under moderate conditions. The oxidation of Cr is the main source of heat generation, which maintains a stable reaction front. The combustion temperature, front propagating velocity and product particle size may be modified by replacing part of the metallic Cr in the reaction mixture by its oxide. Decomposition of either CrO3, SrO2, or NaClO4 provides the oxygen needed for the Cr oxidation. The predicted and observed combustion temperatures are in reasonable agreement. However, experiments indicate that extensive dilution may lead to extinction under conditions for which the thermodynamic analysis predicts that SHS is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Leo, M. J. Blomen, and M. N. Mugerwa, Solid Oxide Fuel Cells (Plenum Press, New York, 1993).

    Google Scholar 

  2. S. C. Singhal, in Proc. 2nd Int. Symp. Solid Oxide Fuel Cells: Solid Oxide Fuel Cell Dev. Westinghouse, F. Grosz, P. Zegers, S. C. Singhal, and O. Yamamsoto, eds. (Luxembourg, 1991), pp. 25–39.

  3. H. U. Anderson, in Proc. Crystal. Ceram. Fabricat. Prop. Control LaCrO 3 Based Oxides, H. Palmour, R. F. Davis, and T. M. Hare, eds. (Plenum Press, New York, 1978), pp. 469–477.

    Google Scholar 

  4. L.-W. Tai and P. A. Lessing, J. Mater. Res. 7, 511 (1992).

    Google Scholar 

  5. Y. Kadogawa and N. Kitayama, Chem. Express 1(3), 145 (1986).

    Google Scholar 

  6. R. G. Chandran and K. C. Patil, Mater. Lett. 12, 437 (1992).

    Google Scholar 

  7. L. A. Chick, L. R. Pederson, G. D. Maupin, et al., Mater. Lett. 10, 6 (1990).

    Google Scholar 

  8. P. B. Avakyan, M. D. Nersesyan, and A. G. Merzhanov, Am. Ceram. Soc. Bull. 75(2), 50 (1996).

    Google Scholar 

  9. J.-P. Lebrat and A. Varma, Physica C 184, 220 (1991).

    Google Scholar 

  10. S-C. Lin, D. X. Li, R. Semiat, J. T. Richardson, and D. Luss, Physica C 218, 130 (1993).

    Google Scholar 

  11. A. G. Merzhanov, in Combustion and Plasma Synthesis of High-Temperature Materials, Self-Propagating High-Temperature Synthesis, Twenty Years of Research and Findings, Z. A. Munir and J. B. Holt, eds. (VCH, New York, 1990), pp. 1–53.

    Google Scholar 

  12. A. A. Shiryaev, Int. J. SHS 4(4), 351 (1995).

    Google Scholar 

  13. A. G. Merzhanov, M. M. Kitain, U. I. Goldshlegev, and A. S. Shteinberg, Dokl. Akad. Nauk SSSP 237(2), 391 (1977).

    Google Scholar 

  14. JANAF, Thermodynamical Tables, 3rd ed. Vol. 14 (1985).

  15. V. L. Glushko, The Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1979).

    Google Scholar 

  16. Y. I. Yukhvid, S. V. Maklakov, P. V. Zhirkov, et al., J. Mater. Sci. 32, 1915 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiryaev, A.A., Nersesyan, M.D., Ming, Q. et al. Thermodynamic Feasibility of SHS of SOFC Materials. Journal of Materials Synthesis and Processing 7, 83–90 (1999). https://doi.org/10.1023/A:1021813629286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021813629286

Navigation