Skip to main content
Log in

Hodge Integrals and Hurwitz Numbers via Virtual Localization

  • Published:
Compositio Mathematica

Abstract

We give another proof of Ekedahl, Lando, Shapiro, and Vainshtein's remarkable formula expressing Hurwitz numbers (counting covers of P1 with specified simple branch points, and specified branching over one other point) in terms of Hodge integrals. Our proof uses virtual localization on the moduli space of stable maps. We describe how the proof could be simplified by the proper algebro-geometric definition of a 'relative space'. Such a space has recently been defined by J. Li.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, D. and Vistoli, A.: Complete moduli for families over semistable curves, Preprint 1998, math.AG/9811059.

  2. Arnol'd, V. I.: Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges, Funct. Anal. Appl. 30 (1) (1996), 1-17.

    Google Scholar 

  3. Crescimanno, M. and Taylor, W.: Large N phases of chiral QCD2, Nuclear Phys. B 437 (1995), 3-24.

    Google Scholar 

  4. Dénes, J.: The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 4 (1959), 63-70.

    Google Scholar 

  5. Edidin, D. and Graham, W.: Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (3) (1998), 619-636.

    Google Scholar 

  6. Ekedahl, T., Lando, S., Shapiro, M. and Vainshtein, A.: On Hurwitz numbers and Hodge integrals, C.R. Acad. Sci. Paris, Ser. I, 328 (1999), 1171-1180.

    Google Scholar 

  7. Ekedahl, T., Lando, S., Shapiro, M. and Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146(2) (2001), 297-327.

    Google Scholar 

  8. Fantechi, B. and Pandharipande, R.: Stable maps and branch divisors, Compositio Math. 130 (2002), 345-364.

    Google Scholar 

  9. Gathmann, A.: Absolute and relative Gromov–Witten invariants of very ample hypersurfaces, Preprint 1999, math.AG/9908054.

  10. Goulden, I. P. and Jackson, D. M.: Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc., 125 (1997), 51-60.

    Google Scholar 

  11. [GJV] Goulden, I. P., Jackson, D. M. and Vakil, R.: The Gromov–Witten potential of a point, Hurwitz numbers and Hodge integrals, Proc. London Math. Soc. 83 (3) (2001), 563-581.

    Google Scholar 

  12. Graber, T. and Pandharipande, R.: Localization of virtual classes, Invent. Math. 135(2) (1999), 487-518.

    Google Scholar 

  13. Ionel, E.-N. and Parker, T.: Relative Gromov–Witten invariants, Preprint 1999, math.SG/9907155.

  14. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147(1) (1992), 1-23.

    Google Scholar 

  15. Kontsevich, M.: Enumeration of rational curves via torus actions, In: R. Dijkgraaf, C. Faber and G. van der Geer (eds), The Moduli Space of Curves, Birkhäuser, Basel, 1995, pp. 335-368.

    Google Scholar 

  16. Kresch, A.: Cycle groups for Artin stacks, Invent. Math. 138(3) (1999), 495-536.

    Google Scholar 

  17. Li, A.-M. and Ruan, Y.: Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145(1) (2001), 151-218.

    Google Scholar 

  18. [LZZ] Li, A.-M., Zhao, G. and Zheng, Q.: The number of ramified covering of a Riemann surface by Riemann surface, Preprint 1999, math.AG/9906053v2.

  19. Li, J.: Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57(3), 509-578.

  20. Li, J.: A degeneration formula of GW-invariants, Preprint 2001, math.AG/ 0110113v1.

  21. [M] Mumford, D.: Towards an enumerative geometry of the moduli space of curves, In: M. Artin and J. Tate (eds), Arithmetic and Geometry, Part II, Birkhäuser, Basel, 1983, pp. 271-328.

    Google Scholar 

  22. Okounkov, A. and Pandharipande, R.: Gromov-Witten theory, Hurwitz numbers, and Matrix models, I, Preprint 2001, math.AG/0101147v2.

  23. Vakil, R.: The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000), 101-153.

    Google Scholar 

  24. Vakil, R.: Recursions for characteristic numbers of genus one plane curves, Arkiv Matematik 39(1) (2001), 157-180.

    Google Scholar 

  25. Vakil, R.: Genus 0 and 1Hurwitz numbers: Recursions, formulas and graphtheoretic interpretations, Trans. Amer. Math. Soc. 353 (2001), 4025-4038.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graber, T., Vakil, R. Hodge Integrals and Hurwitz Numbers via Virtual Localization. Compositio Mathematica 135, 25–36 (2003). https://doi.org/10.1023/A:1021791611677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021791611677

Navigation