Skip to main content
Log in

Activities of Individual Ions From Infinite Dilution to Saturated Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A new procedure, which provides a closer approximation for the junction potentials than the Henderson equation, is tested to reduce new emf data for the chloride ion in CsCl solutions and previously measured data for individual ions in aqueous solutions of KCl, NaCl, and NaBr. The liquid junction potential is calculated from numerical integration of its basic equation without assuming constant mobility or using concentrations instead of activities. The mean ionic activity coefficients of the salts, obtained from the activity coefficients of the individual ions, show good agreement with values reported in the literature. The activity coefficients of the individual chloride ion at 25°C in aqueous solutions of CsCl up to 3 molal and in KCl solutions were measured using a chloride ion-selective electrode. It has been confirmed that the activity of the chloride ion is equal to the activity of the cation in CsCl solutions and, contrary to the prediction of hydration theory, it is higher than the activity of the cation in aqueous KCl solutions. The “New Hydration Theory” has been developed to overcome the shortcomings of the older hydration theory and has been used to smooth the experimental activity coefficients of the individual ions in aqueous solutions and to extrapolate them up to the saturated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Pitzer, J. Amer. Chem. Soc. 102, 2902 (1980).

    Google Scholar 

  2. G. Eisenman, Glass Electrodes for Hydrogen and Other Cations (Marcel Dekker, New York, 1967).

    Google Scholar 

  3. J. J. C. Jansz, Hydrometallurgy 11, 13 (1983).

    Google Scholar 

  4. H. R. Rabie and J. H. Vera, J. Phys. Chem. B. 101, 10295 (1997).

    Google Scholar 

  5. H. R. Rabie and J. H. Vera, Ind. Eng. Chem. Res. 35, 3665 (1996).

    Google Scholar 

  6. A. M. Soto-Campos, M. K. Khoshkbarchi, and J. H. Vera, J. Chem. Thermodyn. 29, 609 (1997).

    Google Scholar 

  7. A. A. Pradhan and J. H. Vera, Fluid Phase Equilibria 152, 121 (1998).

    Google Scholar 

  8. A. Soto, A. Arce, M. K. Khoshkbarchi, and J. H. Vera, Biophys. Chem. 73, 77 (1998).

    Google Scholar 

  9. M. K. Khoshkbarchi and J. H. Vera, Ind. Eng. Chem. Res. 36, 2245 (1997).

    Google Scholar 

  10. G. N. Lewis and M. Randall, Thermodynamics, 1st edn. (McGraw-Hill, New York, 1923).

    Google Scholar 

  11. J. O'M. Bockris and A. K. N. Ready, Modern Electrochemistry, 3rd edn. (Plenum, New York, 1977).

    Google Scholar 

  12. K. S. Pitzer, Thermodynamics, 3rd edn. (McGraw-Hill, New York, 1995).

    Google Scholar 

  13. R. R. Bates, B. R. Staples, and R. A. Robinson, Anal. Chem. 42, 867 (1970). Equation (10) of this reference has an error of sign. The term inside the square brackets should read [1 + 0.018 (2 − h)m].

    Google Scholar 

  14. N. P. Komar and A. Z. Kaftanov, Russ. J. Phys. Chem. 48, 246 (1974).

    Google Scholar 

  15. A. Shatkay and A. Lerman, Anal. Chem. 41, 514 (1969).

    Google Scholar 

  16. G. Milazzo, Z. Phys. Chem. 54, 27 (1967).

    Google Scholar 

  17. G. Milazzo, Z. Phys. Chem. 62, 47 (1968).

    Google Scholar 

  18. G. Milazzo and V. K. Sharma, Z. Phys. Chem. 73, 223 (1970).

    Google Scholar 

  19. G. Milazzo, and G. Schenk, Z. Phys. Chem. 76, 127 (1971).

    Google Scholar 

  20. G. Milazzo, N. Bonciocat, and M. Borda, Electrochim. Acta 21, 349 (1976).

    Google Scholar 

  21. V. M. Mokhov, I. P. Bagdasarova, A. G. Kekeliya, and L. V. Lavrelashvilig, Russ. J. Phys. Chem. 51, 1406 (1977).

    Google Scholar 

  22. M. K. Khoshkbarchi and J. H. Vera, AlChE J. 42, 249 (1996). In Eqs. (9 and 10) of this publication, all terms |z. | in the sums for cations should be |z. +|. In Eq. (9), the sum for anions for solution 1, in the denominator of the pre-exponential factor, should be preceded by a + and not by a − sign.

    Google Scholar 

  23. M. K. Khoshkbarchi, and J. H. Vera, Fluid Phase Equilibria 121, 253 (1996). Equation (3) of this publication, has the same typographical errors as Eq. (9) of Ref. 22.

    Google Scholar 

  24. M. M. Marcos-Arroyo, M. K., Khoshkbarchi, and J. H. Vera, J. Solution Chem. 25, 983 (1996). The symbols for nitrate and potassium ions are exchanged in the caption of Fig. 4 of this publication.

    Google Scholar 

  25. Waters Symposium: Ion Selective Electrodes. J. Chem. Ed. 74, 159 (1997).

    Google Scholar 

  26. J. Rudzicka, J. Chem. Ed. 74, 167 (1997).

    Google Scholar 

  27. A. Haghtalab and J. H. Vera, J. Chem. Eng. Data 36, 332 (1991).

    Google Scholar 

  28. A. Haghtalab and J. H. Vera, J. Solution Chem. 20, 479 (1991).

    Google Scholar 

  29. M. K. Khoshkbarchi and J. H. Vera, AIChE J. 42, 2354 (1996).

    Google Scholar 

  30. M. K. Khoshkbarchi and J. H. Vera, J. Solution Chem. 25, 865 (1996).

    Google Scholar 

  31. M. K. Khoshkbarchi and J. H. Vera, Ind. Eng. Chem. Res. 35, 2735 (1996).

    Google Scholar 

  32. A. M. Soto-Campos, M. K. Khoshkbarchi, and J. H. Vera, Biophys. Chem. 67, 95 (1997).

    Google Scholar 

  33. M. K. Khoshkbarchi, A. M. Soto-Campos, and J. H. Vera, J. Solution Chem. 26, 941 (1997).

    Google Scholar 

  34. A. M. Soto-Campos, M. K. Khoshkbarchi, and J. H. Vera, Fluid Phase Equilibria 142, 193 (1998).

    Google Scholar 

  35. G. Kakabadse, Ion-Selective Electrode Rev. 3, 127 (1981).

    Google Scholar 

  36. A. Haghtalab, Ph. D. Thesis, McGill University, 1990.

  37. P. B. Taylor, J. Phys. Chem. 31, 1478 (1927).

    Google Scholar 

  38. J. W. Gibbs, Collected Works, Vol. 1 (Longmans Green, New York, 1928).

    Google Scholar 

  39. D. A. MacInnes, D. Belcher, and T. Shedlovsky, J. Amer. Chem. Soc. 60, 1094 (1938).

    Google Scholar 

  40. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, 3rd edn. (Reinhold, New York, 1958).

    Google Scholar 

  41. R. R. Bates, Determination of pH; Theory and Practice, 2nd ed. (Wiley, New York, 1965).

    Google Scholar 

  42. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Butterworths, Boston, 1959).

    Google Scholar 

  43. M. K. Khoshkbarchi, Data Files kept by J. H. Vera at McGill University following Faculty Regulations (1998).

  44. D. J. G. Ives and G. J. Janz, Reference Electrodes (Academic Press, New York, 1961).

    Google Scholar 

  45. D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis (Saunders, New York, 1992).

    Google Scholar 

  46. W. J. Hamer and Y. Ch. Wu, J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  47. I. D. Zaytsev and G. G. Aseyev, Properties of Aqueous Solutions of Electrolytes (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  48. S.-H. Chong and F. Hirata, J. Phys. Chem. B 101, 3209 (1997).

    Google Scholar 

  49. G. N. Lewis and M. Randall, Thermodynamics, 2nd edn. revised by K. S. Pitzer and L. Brewer (McGraw-Hill, New York, 1961).

    Google Scholar 

  50. R. H. Stokes and R. A. Robinson, J. Amer. Chem. Soc. 70, 1870 (1948).

    Google Scholar 

  51. M. A. Burghes, Metal Ions in Solutions (Ellis Horwood, Wiley, New York, 1978).

    Google Scholar 

  52. O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions translated by D. J. G. Ives (Consultants Bureau, New York, 1965).

    Google Scholar 

  53. J. E. Desnoyers and C. Jolicoeur, in Modern Aspects of Electrochemistry, No. 5, J. O'M. Bockris and B. E. Conway, eds. (Plenum Press, New York, 1969).

    Google Scholar 

  54. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, 5th edn. (Saunders, New York, 1998), p. A-26.

    Google Scholar 

  55. J. N. Butler, with a chapter by D. R. Cogley, Ionic Equilibrium: Solubility and pH Calculations, 1st edn. (Wiley, New York, 1998), p. 462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabie, H.R., Wilczek-Vera, G. & Vera, J.H. Activities of Individual Ions From Infinite Dilution to Saturated Solutions. Journal of Solution Chemistry 28, 885–913 (1999). https://doi.org/10.1023/A:1021736315580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021736315580

Navigation