Skip to main content
Log in

Calculation of activation energies using the sinusoidally modulated temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Activation energy is calculated from a single curve of a derivative of mass loss perturbed by a sinusoidal modulation of a temperature-time relationship. The method is based on a prediction of a hypothetical derivative of mass loss that corresponds to the absence of this modulation (perturbation). Simple considerations show that the unperturbed derivative coincides with the modulated derivative at inflection points of the modulated temperature-time relationship. The ratio of the perturbed and unperturbed derivatives at the points of time corresponding to maxima and minima of the sinusoidal component of the modulated temperature immediately leads to activation energy. Accuracy of the method grows with decreasing in the amplitude of the modulation.

All illustrations are prepared numerically. It makes possible to objectively test the method and to investigate its errors. Two-stage decomposition kinetics with two independent (parallel) reactions is considered as an example. The kinetic parameters are chosen so that the derivative of mass loss would represent two overlapping peaks. The errors are introduced into the modulated derivative by the random-number generator with the normal distribution. Standard deviation for the random allocation of errors is selected with respect to maximum of the derivative. If the maximum of the derivative is observed within the region from 200 to 600°C and the amplitude of the temperature modulation is equal to 5°C, the error in the derivative 0.5% leads to the error in activation energy being equal to 2-6 kJ mol-1. As the derivative vanishes, the error grows and tends to infinity in the regions of the start and end of decomposition. With the absolute error 0.5% evaluations of activation energy are impossible beyond the region from 5 to 95% of mass loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Šesták, Thermophysical Properties of Solids, Elsevier, Amsterdam 1984.

    Google Scholar 

  2. A. I. Lesnikovich and S. V. Levchik, J. Thermal Anal., 27 (1983) 89.

    Article  CAS  Google Scholar 

  3. A. V. Nikolaev, V. A. Logvimenko and V. M. Gorbachev J. Thermal Anal., 6 (1974) 473.

    Article  CAS  Google Scholar 

  4. V. Mamleev, S. Bourbigot, M. Le Bras, S. Duquesne and J. Šesták, Phys. Chem. Chem. Phys., 2 (2000) 4708.

    Article  CAS  Google Scholar 

  5. V. Mamleev, S. Bourbigot, M. Le Bras, S. Duquesne and J. Šesták, Phys. Chem. Chem. Phys., 2 (2000) 4796.

    Article  CAS  Google Scholar 

  6. V. Mamleev, S. Bourbigot, M. Le Bras, S. Duquesne and J. Šesták, Euroasian Chemico Technological Journal, 2 (2000) 201.

    CAS  Google Scholar 

  7. H. H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.

    Article  CAS  Google Scholar 

  8. T. Ozawa, Bull. Chem. Soc. Japan, 38 (1965) 1881.

    Article  CAS  Google Scholar 

  9. J. H. Flynn and L. A. Wall, Polym. Lett., 4 (1966) 323.

    Article  CAS  Google Scholar 

  10. D. Price, D. Dollimore, N. S. Fatemi and R. Whitehead, Thermochim. Acta, 42 (1980) 323.

    Article  CAS  Google Scholar 

  11. C. H. Li, AIChE J., 31 (1985) 1036.

    Article  CAS  Google Scholar 

  12. R. K. Agrawal, J. Therm. Anal., 32 (1987) 149.

    Article  CAS  Google Scholar 

  13. A. A. Zuru, R. Whitehead and D. L. Griffiths, Thermochim. Acta, 164 (1990) 285.

    Article  Google Scholar 

  14. J. Opfermann, F. Giblin, J. Mayer and E. Kaisersberger, American Laboratory, Febr., 1995, p. 34.

  15. "standard Test Method for Decomposition Kinetics by Thermogravimetry’ ASTM Test method E1641. ASTM Book of Standards 14.02, 1042-1046, American Society for Testing and Materials, 1994.

  16. R. Blaine, American Laboratory, Jan., 1998, p. 21.

  17. S. Vyazovkin, J. Thermal Anal., 49 (1997) 1493.

    Article  CAS  Google Scholar 

  18. S. Vyazovkin, J. Comput. Chem., 18 (1997) 393.

    Article  CAS  Google Scholar 

  19. S. Vyazovkin, Thermochim. Acta, 355 (2000) 155.

    Article  CAS  Google Scholar 

  20. R. L. Blaine and B. K. Hahn, J. Thermal Anal., 54 (1998) 695.

    Article  CAS  Google Scholar 

  21. J. H. Flynn, Thermal Analysis, Vol. 2, R. F. Schwenker and P. D. Garn, Eds, Plenum Press, New York, 1969, p. 1111.

    Google Scholar 

  22. G. F. Forsite, M. A. Malcolm and C. B. Moler, Computer Methods for Mathematical Computations, New Jersey: Englewood Cliffs, Prentice-Hall 1977.

    Google Scholar 

  23. R. K. Otnes and L. Enochson, Applied time series analysis, New York, Wiley-Interscience Publication, Wiley&Sons, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamleev, V., Bourbigot, S. Calculation of activation energies using the sinusoidally modulated temperature. Journal of Thermal Analysis and Calorimetry 70, 565–579 (2002). https://doi.org/10.1023/A:1021697128851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021697128851

Navigation