Skip to main content
Log in

Activation energy of self-heating process Studied by DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to identify the kinetic process of self-heating in DSC experiment for Ti+3Al→TiAl3 reaction, two approaches, linear-fitting approach developed from Semenov"s theory of spontaneous ignition and variation of Friedman method, were carried out with cylindrical Ti-75 at% Al samples. Following these approaches, two identical activation energies are obtained as 169±15 kJ mol-1 and 170±5 kJ mol-1, respectively. Compared with the activation energies of reactions and interdiffusions between Ti and Al, the possible rate-controlling process of self-heating in DSC experiment for Ti+3Al→TiAl3 reaction is the interdiffusion between Ti and Al through TiAl3-layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Merzhanov, Chemistry of advanced materials, Ed. by C. N. R. Rao, Blackwell Scientific Publications, Oxford 1993 p. 19.

    Google Scholar 

  2. J. P. Lebrat and A. Varma, Combust. Sci. Tech., 88 (1992) 177.

    Google Scholar 

  3. Z. A. Munir and W. Lai, Combust. Sci. Tech., 88 (1992) 201.

    Google Scholar 

  4. M. J. Capaldi, A. Sadi and J. V. Wood, ISIJ International, 37 (1997) 188.

    CAS  Google Scholar 

  5. S. Yin, Combustion Synthesis, Metallurgy Press, Beijing 1999 p. 5.

    Google Scholar 

  6. J. Wong, E. M. Larson, J. B. Holt, P. A. Waide, B. Rupp and R. Frahm, Science, 249 (1990) 1406.

    CAS  Google Scholar 

  7. N. Akhtar, R. Janes and M. J. Parker, J. Mater. Sci., 31 (1996) 3053.

    Article  CAS  Google Scholar 

  8. V. A. Knyazik, A. S. Shteinberg and V. I. Gorovenko, J. Thermal Anal., 40 (1993) 363.

    CAS  Google Scholar 

  9. X. Wang, H. Y. Sohn and M. E. Schlesinger, J. Mater. Sci. Eng., 186 A (1994) 151.

    Article  Google Scholar 

  10. T. Wang, L.-Y. Xiang, M.-L. Zhu and J.-S. Zhang, Mater. Lett., accepted.

  11. X. He, X. Xu, J. Han and J. V. Wood, J. Mater. Sci. Lett., 18 (1999) 1201.

    Article  CAS  Google Scholar 

  12. S. D. Dumead, D. W. Readey, C. E. Semler and J. B. Holt, J. Am. Ceram. Soc., 72 (1989) 2318.

    Article  Google Scholar 

  13. J. B. Holt, D. D. Kingman and G. M. Bianchini, Mater. Sci. Eng., 71 (1985) 321.

    Article  CAS  Google Scholar 

  14. S. D. Dunmead and Z. A. Munir, J. Am. Ceram. Soc., 75 (1992) 180.

    Article  CAS  Google Scholar 

  15. L. L. Wang and Z. A. Munir, Metall Mater Trans. B, 26B (1995) 595.

    CAS  Google Scholar 

  16. J. Šesták, Thermophysical Properties of Solids, Elsevier, Amsterdam 1994.

    Google Scholar 

  17. H. C. Yi, A. Patric and J. J. Moore, J. Mater. Sci., 27 (1992) 6797.

    Article  CAS  Google Scholar 

  18. N. N. Semenov, On Some Problems of Chemical Kinetics and Reactivity, Ind. AN SSSR, Moscow 1958, p. 421.

    Google Scholar 

  19. R. Z. Hu, Z. Q. Yang and Y. J. Liang, Thermochim. Acta., 134 (1988) 429.

    Article  CAS  Google Scholar 

  20. S. J. Chu, Thermal Analysis of Explosives, Science Press, Beijing 1994, p. 184.

    Google Scholar 

  21. C. G. Feng, Theory of Thermal Explosion, Science Press, Beijing 1988, p. 1.

    Google Scholar 

  22. A. G. Merzhanov and V. G. Abramov, Propell. Explos., 6 (1981) 130.

    Article  CAS  Google Scholar 

  23. J. Mackowiak and L. L. Shreir, J. Less-Common Metals, 15 (1968) 341.

    Article  CAS  Google Scholar 

  24. F. J. J. van Loo and G. D. Rieck, Acta Metal., 21 (1973) 61.

    Article  CAS  Google Scholar 

  25. F. J. J. van Loo and G. D. Rieck, Acta Metal., 21(1973) 73.

    Article  Google Scholar 

  26. H. Friedman, J. Polym. Sci., 6C (1963) 183.

    Google Scholar 

  27. T. Ozawa, Bull. Chem. Soc. Japan, 38 (1965) 1881.

    Article  CAS  Google Scholar 

  28. J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Standards, 70A (1966) 487.

    Google Scholar 

  29. S. Vyazovkin, Int. Rev. Phys. Chem., 19 (2000) 45.

    Article  CAS  Google Scholar 

  30. S. Vyazovkin, Int. J. Chem. Kinet., 28 (1996) 95.

    Article  CAS  Google Scholar 

  31. S. Vyazovkin and C. A. Wight, Int. Rev. Phys. Chem., 17 (1998) 407.

    Article  CAS  Google Scholar 

  32. S. Vyazovkin and C. A. Wight, J. Phys. Chem., A101 (1997) 8279.

    Google Scholar 

  33. M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham J. Opfermann, R. Stey, H. L. Anderson, A. Kemler, R. Keuleers, J. Janseens, H. O. Desseyn, Chao-Rui Li, Tong B. Tang, B. Roduit, J. Malek and T. Mitsuhashi, Thermochim. Acta, 355 (2000) 125.

    Article  CAS  Google Scholar 

  34. M. Maciejewski, Thermochim. Acta, 355 (2000) 145.

    Article  CAS  Google Scholar 

  35. S. Vyazovkin, Thermochim. Acta, 355 (2000) 155.

    Article  CAS  Google Scholar 

  36. A. K. Burnham, Thermochim. Acta, 355 (2000) 165.

    Article  CAS  Google Scholar 

  37. B. Roduit, Thermochim. Acta, 355 (2000) 171.

    Article  CAS  Google Scholar 

  38. N. Koga, Thermochim. Acta, 258 (1995) 145.

    Article  CAS  Google Scholar 

  39. S. Vyazovkin, Thermochim. Acta, 236 (1994) 1.

    Article  CAS  Google Scholar 

  40. G. Wang and M. Dahms, JOM, 45 (1993) 52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Liu, R.Y., Zhu, M.L. et al. Activation energy of self-heating process Studied by DSC. Journal of Thermal Analysis and Calorimetry 70, 507–519 (2002). https://doi.org/10.1023/A:1021684726126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021684726126

Navigation