Skip to main content
Log in

Fractals and Percolation in the Theory of Porous Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A computer-aided simulation of the structure of a porous electrode is performed using flat lattices of sites (they are capable of conducting electrons and are randomly distributed in the electrode) as an example. To adequately describe properties of a porous electrode, information about the degree of dispersion of the particles that make up the electrode (“fractal dimensionality”) must be complemented by that on their clusterization (presence of “percolation clusters”). These factors impart two properties to a porous electrode, specifically, a developed surface, on which an electrochemical process may proceed, and the possibility of a continuous supply of electrons to this surface. A percolation cluster may be dismembered to a “trunk” (it provides for the electron transport) and a “crown” (aggregate of particles that make a major contribution to the electrochemical process). The dismembering was performed via computer flow diagrams proposed by the authors. A computer-aided analysis of characteristics of a porous electrode points to the existence of an optimum structure in which the electrochemical activity is capable of reaching a maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  2. Manegold, E., Kolloid-Z., 1933, vol. 62, p. 285; 1937, vol. 80, p. 253.

    Google Scholar 

  3. de Boer, J.H., Proc. 10th Symp. of the Colston Research Society, London: Butterworths, 1958, vol. 10, p. 68.

    Google Scholar 

  4. Holdworth, S.D., Chem. Process Eng. (London), 1963, vol. 44, p. 184.

    Google Scholar 

  5. Mandelbrot, B.B., Fractals: Form, Chance, and Dimension, San Francisco: Freeman, 1977.

    Google Scholar 

  6. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1982.

    Google Scholar 

  7. Sander, L.M., Sci. Am., 1987, vol. 256, no. 3, p. 62.

    Google Scholar 

  8. Fractals in Physics, Pietronero, L. and Tosatti, E., Eds., Amsterdam: North-Holland, 1986.

    Google Scholar 

  9. Jullien, R., Comments Mod. Phys., Part B, 1987, vol. 13, no. 4, p. 177.

    Google Scholar 

  10. Goldberger, A.L., Rigney, D.R., and West, B.J., Sci. Am., 1990, vol. 262, no. 4, p. 25.

    Google Scholar 

  11. Feder, J., Fractals, New York: Plenum, 1988.

    Google Scholar 

  12. Smirnov, B.M., Fizika fraktal'nykh klasterov (Physics of Fractal Clusters), Moscow: Nauka, 1991; Usp. Fiz. Nauk, 1991, vol. 161, p. 171; 1993, vol. 163, p. 51.

    Google Scholar 

  13. Guyon, E., Metiscu, C.D., Hulin, J. P., and Roux, S., in Fractals in Physics: Essays in Honour of Benoit B. Mandelbrot, Aharony, A. and Feder, J., Eds., Amsterdam: North-Holland, 1989; Physica D (Amsterdam), 1989, vol. 38, p. 172.

    Google Scholar 

  14. Binder, K., in Proceedings of the Workshop “Stochastic Nonlinear Systems in Physics, Chemistry, and Biology,” Bielefeld, 1980, Arnold, L. and Kefever, R., Eds., Berlin: Springer, 1981, p. 62.

    Google Scholar 

  15. Peitgen, H.-O. and Richter, P.H., The Beauty of Fractals: Images of Complex Dynamical Systems, Berlin: Springer, 1986. Translated under the title Krasota fraktalov, Moscow: Mir, 1993.

    Google Scholar 

  16. Sinergetika i fraktaly v materialovedenii (Synergetics and Fractals in Material Science), Lyakishev, N.P., Ed., Moscow: Nauka, 1994.

    Google Scholar 

  17. Nigmatullin, R.R., Ovchinnikov, M.N., and Ryabov, Ya.E., Priroda, 1998, no. 2, p. 61.

  18. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  19. Zolotukhin, I.V., Kalinin, Yu.E., and Stognei, O.V., Novye napravleniya fizicheskogo materialovedeniya (Trends in Physical Material Science), Voronezh: Voronezh. Gos. Univ, 2000.

    Google Scholar 

  20. Broadbent, S.R. and Hammersley, J.M., Proc. Cambridge Philos. Soc., 1971, vol. 20, p. 235.

    Google Scholar 

  21. Shante, V.K.S. and Kirkpatrick, S., Adv. Phys., 1971, vol. 20, p. 325.

    Google Scholar 

  22. Phase Transitions and Critical Phenomena, Domb, C. and Green, M.S., Eds., London: Academic, 1972, vol. 2, p. 208.

    Google Scholar 

  23. Shklovskii, B.I. and Efros, A.L., Usp. Fiz. Nauk, 1975, vol. 117, p. 401.

    Google Scholar 

  24. Chirkov, Yu.G., Elektrokhimiya, 1976, vol. 12, p. 889; 1976, vol. 12, p. 895; 1976, vol. 12, p. 1019; 1977, vol. 13, p. 1026; 1977, vol. 13, 1167; 1977, vol. 13, 1304; 1977, vol. 13, 1617; 1978, vol. 14, p. 903; 1999, vol. 35, p. 1449.

    Google Scholar 

  25. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 1977, vol. 13, p. 1850.

    Google Scholar 

  26. Shklovskii, B.I. and Efros, A.L., Elektricheskie svoistva legirovannykh poluprovodnikov (Electrical Properties of Doped Semiconductors), Moscow: Nauka, 1979.

    Google Scholar 

  27. Efros, A.L., Fizika i geometriya besporyadka (Physics and Geometry of Disorder), Moscow: Nauka, 1982.

    Google Scholar 

  28. Chirkov, Yu.G., Matematicheskie metody v zadachakh petrofiziki i korrelyatsii (Mathematical Methods in Petrophysics and Correlation), Moscow: Nauka, 1983, p. 39.

    Google Scholar 

  29. Kesten, H., Percolation Theory for Mathematicians, Boston: Birkhauser, 1982.

    Google Scholar 

  30. Sokolov, I.M., Usp. Fiz. Nauk, 1986, vol. 150, p. 221.

    Google Scholar 

  31. Mason, G., Characterization of Porous Solids: Proc. of IUPAC Symp. (COPS I), Unger, K.K. et al., Eds., Amsterdam: Elsevier, 1988; Studies in Surface Science and Catalysis, 1988, vol. 39, p. 323.

    Google Scholar 

  32. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya (in press).

  33. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1130.

    Google Scholar 

  34. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Fractals and Percolation in the Theory of Porous Electrodes. Russian Journal of Electrochemistry 38, 1299–1308 (2002). https://doi.org/10.1023/A:1021664520951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021664520951

Keywords

Navigation