Skip to main content
Log in

Fractal Study on the Effective Diffusion Coefficient of Gases in Rough Porous Media

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Since the internal structure of actual porous media has irregularity and complexity and is rough on the surface, it cannot be characterized accurately by traditional theoretical analytical methods. In this paper, the mathematical formalism of the effective diffusion coefficient of gas on rough porous surfaces is established by employing fractal geometry theory, utilizing the rough capillary tube bundle model, and introducing the penetration correction factor. The effective gas diffusion coefficient is investigated as a function relation of the rough porous media structural parameters and gas parameters. The results show that the effective diffusion coefficient of gas is positively correlated to the porosity, maximum pore diameter, and area fractal dimension of porous media and negatively correlated to the relative roughness, tortuous fractal dimension, the molar mass of gas, and gas density. The correctness and reliability of the present model have been confirmed, by the comparative analysis of the model predictive values in this paper and the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Zoeir, M. Riazi, Y. Kazemzadeh, and E. Khodapanah, To Optimize Well Pattern During Miscible Gas Injection Process via Heuristic Techniques, J. Pet. Sci. Eng., 2022, 208, p 109786.

    Article  CAS  Google Scholar 

  2. M. Zhang, H. Yang, S. Wu, and S. Sun, Parallel multilevel domain decomposition preconditioners for monolithic solution of non-isothermal flow in reservoir simulation, Comput. Fluids, 2022, 232, p 105183.

    Article  Google Scholar 

  3. Z. Ye, T. Ding, X. Zhou, M. Ju, R. Yi, W. Jiang, X. Cui, X. Lin, C. Sun, and J. Sun, Corrosion Behavior of Carbon Steel in Crude Oil–Water–Gas Multiphase Environments with CO2 and H2S, J. Mater. Eng. Perform., 2022, 31, p 7673–7685.

    Article  CAS  Google Scholar 

  4. B. Sheikh and T. Qiu, Pore-Scale Simulation and Statistical Investigation of Velocity and Drag Force Distribution Of Flow Through Randomly-Packed Porous Media Under Low and Intermediate Reynolds Numbers, Comput. Fluids, 2018, 171, p 15–28.

    Article  Google Scholar 

  5. X. Zhang, J. Wang, H. Yang, J. Li, Y. Li, and Q. Wu, Formation and Storage Characteristics of CO2 Hydrate in Porous Media: Effect of Liquefaction Amount on the Formation Rate, Accumulation Amount, Appl. Therm. Eng., 2022, 214, p 118747.

    Article  CAS  Google Scholar 

  6. Y. Takeuchi, J. Takeuchi, and M. Fujihara, Numerical Investigation of Inertial, Viscous, and Capillary Effects on the Drainage Process in Porous Media, Comput. Fluids, 2022, 237, p 105324.

    Article  Google Scholar 

  7. B. Kabdenova, L.R. Rojas-Solórzano, and E. Monaco, Lattice Boltzmann Simulation of Near/Supercritical CO2 Flow Featuring a Crossover Formulation of the Equation of State, Comput. Fluids, 2021, 216, p 104820.

    Article  CAS  Google Scholar 

  8. Y. Zhang, Y. Tao, H. Ren, M. Wu, G. Li, Z. Wan, and J. Shao, A Metallic Gas Diffusion Layer and Porous Media Flow Field for Proton Exchange Membrane Fuel Cells, J. Power Sources, 2022, 543, p 231847.

    Article  CAS  Google Scholar 

  9. M. Peng, L. Chen, R. Zhang, W. Xu, and W.Q. Tao, Improvement of Thermal and Water Management of Air-Cooled Polymer Electrolyte Membrane Fuel Cells by Adding Porous Media into the Cathode Gas Channel, Electrochim. Acta, 2022, 412, p 140154.

    Article  CAS  Google Scholar 

  10. G. Kolb, V. Hessel, V. Cominos, H. Pennemann, J. Schürer, R. Zapf, and H. Löwe, Microstructured Fuel Processors for Fuel-Cell Application, J. Mater. Eng. Perform., 2006, 15, p 389–393.

    Article  CAS  Google Scholar 

  11. B.K. Chang and B.J. Tatarchuk, Microfibrous Entrapment of Small Catalyst Particulates for High Contacting Efficiency Removal of Trace CO from Practical Reformates for PEM H2–O2 Fuel Cells, J. Mater. Eng. Perform., 2006, 15, p 453–456.

    Article  CAS  Google Scholar 

  12. M. Liang, Y. Liu, B. Xiao, S. Yang, Z. Wang, and H. Han, An Analytical Model for the Transverse Permeability of Gas Diffusion Layer with Electrical Double Layer Effects in Proton Exchange Membrane Fuel Cells, Int. J. Hydrog. Energy, 2018, 43, p 17880–17888.

    Article  CAS  Google Scholar 

  13. B. Xiao, H. Zhu, F. Chen, G. Long, and Y. Li, A Fractal Analytical Model for Kozeny-Carman Constant and Permeability of Roughened Porous Media Composed of Particles and Converging-Diverging Capillaries, Powder Technol., 2023, 420, p 118256.

    Article  CAS  Google Scholar 

  14. Y. Zhang, B. Xiao, B. Tu, G. Zhang, Y. Wang, and G. Long, Fractal Analysis for Thermal Conductivity of Dual Porous Media Embedded with Asymmetric Tree-Like Bifurcation Networks, Fractals, 2023, 31, p 2350046.

    Article  Google Scholar 

  15. J. Gao, B. Xiao, B. Tu, F. Chen, and Y.H. Liu, A Fractal Model for Gas Diffusion in Dry and Wet Fibrous Media with Tortuous Converging-Diverging Capillary Bundle, Fractals, 2022, 30, p 2250176.

    Article  Google Scholar 

  16. Q. Zheng, J. Fan, and C. Xu, Fractal Model of Gas Diffusion Through Porous Fibrous Materials with Rough Surfaces, Fractals, 2018, 26(05), p 1850065.

    Article  Google Scholar 

  17. J.A. Currie, Gaseous Diffusion in Porous Media. Part 2.-Dry Granular Materials, Br. J. Appl. Phys., 1960, 11(8), p 318–324.

    Article  CAS  Google Scholar 

  18. S. Roy, R. Raju, H.F. Chuang, B.A. Cruden, and M. Meyyappan, Modeling Gas Flow Through Microchannels and Nanopores, J. Appl. Phys., 2003, 93(8), p 4870–4879.

    Article  CAS  Google Scholar 

  19. H. Sheikha, M. Pooladi-Darvish, and A.K. Mehrotra, Development of Graphical Methods for Estimating the Diffusivity Coefficient of Gases in Bitumen from Pressure-Decay Data, Energy Fuels, 2005, 19(5), p 2041–2049.

    Article  CAS  Google Scholar 

  20. X. He, Y. Guo, M. Li, N. Pan, and M. Wang, Effective Gas Diffusion Coefficient in Fibrous Materials by Mesoscopic Modeling, Int. J. Heat Mass Transf., 2017, 107, p 736–746.

    Article  CAS  Google Scholar 

  21. T. Zhao, H. Zhao, Z. Ning, X. Li, and Q. Wang, Permeability Prediction of Numerical Reconstructed Multiscale Tight Porous Media Using the Representative Elementary Volume SCALE LATTICE BOLTZMANN METHOD, Int. J. Heat Mass Transf., 2018, 118, p 368–377.

    Article  Google Scholar 

  22. L.P. Wang and B. Afsharpoya, Modeling Fluid Flow in Fuel Cells Using the Lattice-Boltzmann Approach, Math. Comput. Simul., 2006, 72(2–6), p 242–248.

    Article  Google Scholar 

  23. B. Yu, M. Zou, and Y. Feng, Permeability of Fractal Porous Media by Monte Carlo Simulations, Int. J. Heat Mass Transf., 2005, 48(13), p 787–2794.

    Article  Google Scholar 

  24. Q. Zheng, B. Yu, S. Wang, and L. Luo, A Diffusivity Model for Gas Diffusion Through Fractal Porous Media, Chem. Eng. Sci., 2012, 68(1), p 650–655.

    Article  CAS  Google Scholar 

  25. J. Cai, X. Hu, B. Xiao, Y. Zhou, and W. Wei, Recent Developments on Fractal-Based Approaches to Nanofluids and Nanoparticle Aggregation, Int. J. Heat Mass Transf., 2017, 105, p 623–637.

    Article  CAS  Google Scholar 

  26. M. Liang, C. Fu, B. Xiao, L. Luo, and Z. Wang, A Fractal Study for the Effective Electrolyte Diffusion Through Charged Porous Media, Int. J. Heat Mass Transf., 2019, 137, p 365–371.

    Article  CAS  Google Scholar 

  27. S. Mao, A. Kan, Z. Huang, and W. Zhu, Prediction of Thermal Performance of Vacuum Insulation Panels (VIPs) with Micro-Fiber Core Materials, Mater. Today Commun., 2020, 22, p 100786.

    Article  CAS  Google Scholar 

  28. B. Yu and P. Cheng, A Fractal Permeability Model for bi-Dispersed Porous Media, Int. J. Heat Mass Transf., 2002, 45(14), p 2983–2993.

    Article  Google Scholar 

  29. P. Xu, A Discussion on Fractal Models for Transport Physics of Porous Media, Fractals, 2015, 23(03), p 1530001.

    Article  Google Scholar 

  30. B. Xiao, H. Yan, S. Xiao, W. Ren, J. Fan, and Z. Pan, An Analytical Model for Gas Diffusion Through Fractal Nanofibers in Complex Resources, J. Nat. Gas Sci. Eng., 2016, 33, p 1324–1329.

    Article  CAS  Google Scholar 

  31. A. Das, R.P. Yadav, V. Chawla, S. Kumar, Ş Ţălu, E.P. Pinto, and R.S. Matos, Analyzing the Surface Dynamics of Titanium Thin Films Using Fractal and Multifractal Geometry, Mater. Today Commun., 2021, 27, p 102385.

    Article  CAS  Google Scholar 

  32. S. Yang, M. Wang, S. Zheng, S. Zeng, and L. Gao, Fractal Permeability Model of Newtonian Fluids in Rough Fractured Dual Porous Media, Mater., 2022, 15(13), p 4662.

    Article  CAS  Google Scholar 

  33. B. Yu, Analysis of Flow in Fractal Porous Media, ASME Appl. Mech. Rev., 2008, 61(5), p 050801.

    Article  Google Scholar 

  34. L.Z. Zhang, A Fractal Model for Gas Permeation Through Porous Membranes, Int. J. Heat Mass Transf., 2008, 51(21–22), p 5288–5295.

    Article  Google Scholar 

  35. C. Li, P. Xu, S. Qiu, and Y. Zhou, The Gas Effective Permeability of Porous Media with Klinkenberg Effect, J. Nat. Gas Sci. Eng., 2016, 34, p 534–540.

    Article  Google Scholar 

  36. C. Wang, S. Zhang, and J. Xu, Fractal Model of Effective Gas Diffusion Coefficient Based on Permeability Correction Factor, Lithol. Reserv., 2021, 33, p 162–168. (in Chinese)

    Google Scholar 

  37. A. Majumdar and B. Bhushan, Fractal Model of Elastic-Plastic Contact Between Rough Surfaces, ASME. J. Tribol., 1991, 113, p 1–11.

    Article  Google Scholar 

  38. B. Xiao, Y. Liu, H. Chen, X. Chen, and G. Long, A Novel Fractal Solution for Laminar Flow Resistance in Roughened Cylindrical Microchannels, Fractals, 2020, 28(06), p 2050097.

    Article  Google Scholar 

  39. B. Yu and J. Li, Some Fractal Characters of Porous Media, Fractals, 2001, 9(03), p 365–372.

    Article  CAS  Google Scholar 

  40. Y. Feng, B. Yu, M. Zou, and D. Zhang, A Generalized Model for the Effective Thermal Conductivity of Porous Media Based on Self-similarity, J. Phys. D Appl. Phys., 2004, 37(21), p 3030.

    Article  CAS  Google Scholar 

  41. B. Xiao, W. Wang, X. Zhang, G. Long, J. Fan, H. Chen, and L. Deng, A Novel Fractal Solution for Permeability and Kozeny-Carman Constant of Fibrous Porous Media Made up of Solid Particles and Porous Fibers, Powder Technol., 2019, 349, p 92–98.

    Article  CAS  Google Scholar 

  42. B. Xiao, S. Wang, Y. Wang, G. Jiang, Y. Zhang, and H. Chen, Effective Thermal Conductivity of Porous Media with Roughened Surfaces by Fractal-Monte Carlo Simulations, Fractals, 2020, 28(02), p 2050029.

    Article  Google Scholar 

  43. W. Wei, J. Cai, J. Xiao, Q. Meng, B. Xiao, and Q. Han, Kozeny-Carman Constant of Porous Media: Insights from Fractal-Capillary Imbibition Theory, Fuel, 2018, 234, p 1373–1379.

    Article  CAS  Google Scholar 

  44. P. Xu and B. Yu, Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry, Adv. Water Resour., 2008, 31(1), p 74–81.

    Article  CAS  Google Scholar 

  45. M. Yun, B. Yu, and J. Cai, Analysis of Seepage Characters in Fractal Porous Media, Int. J. Heat Mass Transf., 2009, 52(13–14), p 3272–3278.

    Article  Google Scholar 

  46. B. Yu and J. Li, A Geometry Model for Tortuosity of Flow Path in Porous Media, Chin. Phys. Lett., 2004, 21(8), p 1569.

    Article  Google Scholar 

  47. J. Comiti and M. Renaud, A New Model for Determining Mean Structure Parameters of Fixed Beds from Pressure Drop Measurements: Application to Beds Packed with Parallelepipedal Particles, Chem. Eng. Sci., 1989, 44(7), p 1539–1545.

    Article  CAS  Google Scholar 

  48. B. Xiao, Y. Zhang, Y. Wang, W. Wang, H. Chen, X. Chen, and G. Long, An Investigation on Effective Thermal Conductivity of Unsaturated Fractal Porous Media with Roughened Surfaces, Fractals, 2020, 28(05), p 2050080.

    Article  Google Scholar 

  49. A. Beskok and G.E. Karniadakis, Report: A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales, Microscale Thermophys. Eng., 1999, 3(1), p 43–77.

    Article  CAS  Google Scholar 

  50. S. Yang, B. Yu, M. Zou, and M. Liang, A Fractal Analysis of Laminar Flow Resistance in Roughened Microchannels, Int. J. Heat Mass Transf., 2014, 77, p 208–217.

    Article  Google Scholar 

  51. S. Yang, M. Liang, B. Yu, and M. Zou, Permeability Model for Fractal Porous Media with Rough Surfaces, Microfluid Nanofluid, 2015, 18, p 1085–1093.

    Article  Google Scholar 

  52. B. Xiao, Q. Huang, H. Chen, X. Chen, and G. Long, A Fractal Model for Capillary Flow Through a Single Tortuous Capillary with Roughened Surfaces in Fibrous Porous Media, Fractals, 2021, 29(01), p 2150017.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51641606) and the Key Project of Science and Technology Research Program of Hubei Provincial Education Department (Grant No. D20221201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Yang or Sheng Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, S., Zheng, S. et al. Fractal Study on the Effective Diffusion Coefficient of Gases in Rough Porous Media. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08731-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08731-6

Keywords

Navigation