Skip to main content
Log in

Basic Characteristics of Synchrotron Radiation

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Many advances have been made in chemical structure research over the past three decades using synchrotron radiation. Synchrotron radiation has a number of unique properties. They include high brightness, high collimation, broad energy spectrum, variable polarization, coherent power, and subnanosecond pulse width. The third-generation storage rings with wiggler and undulator sources and lower electron beam dimensions are delivering over 1012 times higher brightness than laboratory-based sources. The future of synchrotron sources looks very promising with the development of energy recovery linac sources and free-electron laser sources. These will permit dynamic studies of chemical structure with subpicosecond time resolution. Commensurate with the development of X-ray sources, major progress has occurred in optical schemes to meet the challenging needs of chemical structure research. High-resolution monochromatization and submicron focusing of X rays present new avenues for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCE

  1. Blewett, J. P. Phys. Rev. 1946, 69, 87.

    Google Scholar 

  2. Bienenstock, A. et al. In McGraw Hill Encyclopedia of Science & Technology, 9th ed., McGraw Hill: New York, 2001, in press

    Google Scholar 

  3. Duke, P. J. Synchrotron Radiation: Production and Properties; Oxford Press: Oxford, 2000.

    Google Scholar 

  4. Winick, H, Synchrotron Radiation Sources—A Primer; World Scientific: 1994.

  5. Krinsky, S.; Perlman, M. L.; Watson, R. E. In Handbook of Synchrotron Radiation, Vol. 1b; Eastman, D. E.; Farge, Y., Eds.; North-Holland: Amsterdam; p. 65

  6. Wiedemann, H. Particle Accelerator Physics; Springer Verlag: Berlin, 1993.

    Google Scholar 

  7. Marchand, P.; Rivkin, L. Proc. IEEE Part. Accel. Conf., 1991, p. 78

  8. Decker, G. Proc. IEEE Part. Accel. Conf., 1997, p. 698

  9. Walker, R. P.; Diviacco, B. Synchrotron Radiat. News, 2000, 13, 33.

    Google Scholar 

  10. Kim, K.-J. In X-ray Data Booklet, LBNL/PUB-490, Rev.2; Lawrence Berkeley National Laboratory, 2001, p. 2–1

  11. Lang, J. C.; Srajer, G.; Dejus, R. J. Rev. Sci. Instr. 1996, 67, 62.

    Google Scholar 

  12. Chavanne, J.; Elleaume, P.; Van Vaerenberg, P. J. Synchrotron Radiat. 1998, 5, 196.

    PubMed  Google Scholar 

  13. Guskin, E. J. Synchrotron Radiat. 1998, 5, 189.

    PubMed  Google Scholar 

  14. Kitamura, H. J. Synchrotron Radiat. 1998, 5, 184.

    PubMed  Google Scholar 

  15. Yamamoto, S. et al. Phys. Rev. Lett. 1989, 62, 2672.

    PubMed  Google Scholar 

  16. Montano, P. A. et al. Rev. Sci. Instr. 1995, 66, 1839.

    Google Scholar 

  17. Kakuno, K.; Sasaki, S. JAERI-M Rep. 1992, No. 92–157

  18. Howells, M. et al. In Modern Microscopies: Techniques and Applications; Duke, P.; Michette, A. G., Eds.; Plenum Press: New York, 1990; p. 132

    Google Scholar 

  19. Lurio, L. B. et al. Synchrotron Radiat. News 2000, 13, 28.

    Google Scholar 

  20. Atwood, D.; Halbach, K.; Kim, K.-J. Science 1985, 228, 1265.

    Google Scholar 

  21. Techert, S.; Schotte, F.; Wulff, M. Phys. Rev. Lett. 2001, 86, 2030. Neutz, R. et al. Phys. Rev. Lett. 2001, 87, 195508.

    PubMed  Google Scholar 

  22. Chen, L. X. et al. Science 2001, 292, 262.

    PubMed  Google Scholar 

  23. Ben-Zvi, I.; Krinsky, S. Synchrotron Radiat. News 2001, 14, 20.

    Google Scholar 

  24. Nuhn, H.-D.; Rossbach, J. Synchrotron Radiat. News 2000, 13, 18.

    Google Scholar 

  25. Als-Nielsen, J.; McMorrow, D. Elements of Modern X-ray Physics; Wiley: New York, 2000.

    Google Scholar 

  26. Matushita, T; Hashizume, H. In Handbook on Synchrotron Radiation, Vol 1A; Koch, E.; Noth-Holland: Amsterdam, 1983; p. 261

    Google Scholar 

  27. Smither, R. K. SPIE Proc. 1992, 1739, 116.

    Google Scholar 

  28. Bilderbach, D. H. et al. J. Synchrotron Radiat., 2000, 7, 53.

    Google Scholar 

  29. Fernandez, P. B. et al. Nucl. Instr. Methods 1997, A400, 476.

    Google Scholar 

  30. Monochromator at the Advanced Photon Source, Nucl. Instr. Methods A 400, pp. 476–483, (1997).

  31. Burkel, E. Inelastic Scattering: Springer-Verlag: Berlin, 1991; p. 33; Sette, F. Science 1998, 280, 1550.

    Google Scholar 

  32. Mooney, T. M. et al. Nucl. Instr. Methods 1994, A347, 348.; Toellner, T. S. Hyperfine Interactions 2000, 125, 3.

    Google Scholar 

  33. Sinn, H. et al. J. Nucl. Instr. Methods 2001, A467, 1545.

    Google Scholar 

  34. Sparks, C. J.; Ice, G. E. Nucl. Instr. Methods 1982, 195, 73.

    Google Scholar 

  35. Mills, D. M.; Henderson, C; Batterman, B. W. Nucl. Instr. Methods 1986, A246, 356.

    Google Scholar 

  36. Quintana, J. P.; Kushnir, V. I.; Rosenbaum, G. Nucl. Instr. Methods 1995, A362, 592.

    Google Scholar 

  37. Zhong, Z. et al. J. Appl. Crystallogr. 2001, 34, 504.

    Google Scholar 

  38. Kirkpatrick, P.; Baez, A. V. J. Opt. Soc. Amer. 1948, 9, 766.

    Google Scholar 

  39. Eng, P. J. et al. Proc. SPIE–Inter. Soc. Opt. Eng. 1998, 3449, 253.

    Google Scholar 

  40. Bilderback, D. H.; Hoffman, S. A.; Thiel, D. J. Science 1994, 263, 201.

    PubMed  Google Scholar 

  41. Lengeler, B. et al. J. Synchrotron Radiat. 1999, 6, 1153.

    Google Scholar 

  42. Snigirev, A. Rev. Sci. Instr. 1995, 66, 2053.

    Google Scholar 

  43. Yun, W. et al. Rev. Sci. Instr. 1999, 70, 2238.

    Google Scholar 

  44. Riekel, C. Rep. Progr. Phys. 2000, 63, 233.

    Google Scholar 

  45. Shastri, S. D. et al. Opt. Commun. 2001, 197, 9.

    Google Scholar 

  46. Mandelkow, E, Ed., Synchrotron Radiation in Chemistry and Biology; Springer-Verlag: Berlin, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, G. Basic Characteristics of Synchrotron Radiation. Structural Chemistry 14, 3–14 (2003). https://doi.org/10.1023/A:1021656723964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021656723964

Navigation