Skip to main content
Log in

Radiant Heat Transfer in Propagation of Nonlinear Waves in a Plasma. Integral Approximation for a Real Spectrum

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Using the spectrum‐integral method of partial characteristics, we investigated radiative transfer of energy in a plasma, taking into account the actual optical properties of the plasma. The method is based on the representation of the plasma radiation flux (in the case of a plane layer) or its intensity (for an arbitrary geometry) in terms of the spectrum‐integral quantities. Usually an assumption on continuous (linear or parabolic) distribution of thermodynamic parameters of the plasma between the points of radiation generation and of its observation is used. This approximation provides a good description of radiation transfer in a plasma with small gradients of the parameters. In the case of a sharp change in the plasma parameters due to the propagation of nonlinear waves in it, the method of partial characteristics is generalized by introducing discontinuity solutions into consideration. Results are given confirming the high efficiency of the approach described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. M. Mihalas and B. W. Mihalas, Foundations of Radiation Gasdynamics, Oxford University Press, New York(1984).

    Google Scholar 

  2. B. N. Chetverushkin, Mathematical Modeling of the Radiating Gas Dynamics Problems [in Russian], Moscow (1985).

  3. S. T. Surzhikov, Computing Experiment in Construction of Radiation Models of the Radiating Gas Mechanics [in Russian], Moscow (1992).

  4. K. L. Stepanov, L. K. Stanchits, and Yu. A. Stankevich, in: P. Fauchais and J. Amouroux (eds.), Progress in Plasma Processing of Materials, Begell House, New York (1999), pp. 67–75.

    Google Scholar 

  5. K. L. Stepanov, L. K. Stanchits, and Yu. A. Stankevich, Teplofiz. Vys. Temp., 38, No. 2, 200–208 (2000); 38, No. 3, 390-396 (2000).

    Google Scholar 

  6. V. G. Sevast'yanenko, Radiation Transfer in a Real Spectrum, Doctoral Dissertation (in Physics and Mathematics), Novosibirsk (1980).

  7. I. F. Golovlev, V. P. Zamuraev, S. S. Katsnel'son, et al., Radiation Transfer in High-Temperature Gases. Handbook [in Russian], Moscow (1984).

  8. G. S. Romanov, Yu. A. Stankevich, L. K. Stanchits, and K. L. Stepanov, Int. J. Heat Mass Transf., 38, No. 3, 545–556 (1995).

    Google Scholar 

  9. G. S. Romanov, Yu. A. Stankevich, L. K. Stanchits, and K. L. Stepanov, Inzh.-Fiz. Zh., 68, No. 2, 291–305 (1995).

    Google Scholar 

  10. K. L. Stepanov, L. K. Stanchits, and Yu. A. Stankevich, Zh. Prikl. Spektrosk., 67, No. 2, 238–243 (2000).

    Google Scholar 

  11. K. L. Stepanov, L. N. Panasenko, G. S. Romanov, et al., Inzh.-Fiz. Zh., 72, No. 6, 1101–1110 (1999).

    Google Scholar 

  12. I. V. Avilova, L. M. Biberman, V. S. Vorob'ev, et al., Optical Properties of Hot Air [in Russian], Moscow (1970).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Stepanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanov, K.L., Stankevich, Y.A. & Stanchits, L.K. Radiant Heat Transfer in Propagation of Nonlinear Waves in a Plasma. Integral Approximation for a Real Spectrum. Journal of Applied Spectroscopy 69, 788–794 (2002). https://doi.org/10.1023/A:1021577501077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021577501077

Navigation