Skip to main content
Log in

Transport Models for Plasma Heating with Second Harmonic of Electron-Cyclotron Frequency

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The optical thickness of plasma is often insufficient to absorb completely electromagnetic waves when heated at the second harmonic of the electron-cyclotron frequency. The analysis of experiments at the T-10 tokamak allowed us to find the criterion of complete absorption and to provide a transport model for complete and incomplete absorption of waves. The conditions for the equivalence of discharges in different tokamaks, as well as in a pair of tokamak–stellarator W7-X are formulated. For equivalent discharges, calculations using the model for the T-15MD tokamak meet the measurements of electron and ion temperatures in the W7-X in a wide range of plasma densities. The confirmed model is used to analyze future T-15MD pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Dnestrovskij et al., Plasma Phys. Control. Fusion 49, 1477 (2007).

    Article  ADS  Google Scholar 

  2. Yu. N. Dnestrovskij, Self-Organization of Hot Plasmas (Springer Int., Switzerland, 2015).

    Book  Google Scholar 

  3. Yu. N. Dnestrovskij, V. A. Vershkov, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Melnikov, G. F. Subbotin, D. Yu. Sychugov, S. V. Cherkasov, and D. A. Shelukhin, Plasma Phys. Rep. 45, 207 (2019).

    Article  ADS  Google Scholar 

  4. Yu. N. Dnestrovski, A. V. Danilov, A. Yu. Dnestrovskij, L. A. Klyuchnikov, S. E. Lysenko, A. V. Melnikov, A. R. Nemets, M. R. Nurgaliev, G. F. Subbotin, N. A. Soloviev, A. V. Sushkov, D. Yu. Sychugov, and S. V. Cherkasov, Plasma Phys. Rep. 46, 477 (2020).

    Article  ADS  Google Scholar 

  5. V. A. Krupin et al., Phys. At. Nucl. 78, 1164 (2015).

    Article  Google Scholar 

  6. L. A. Klyuchnikov et al., Rev. Sci. Instrum. 87, 053506 (2016).

  7. Yu. N. Dnestrovskij et al., Plasma Phys. Control. Fusion 63, 055012 (2021).

  8. A. V. Melnikov et al., Fusion Eng. Des. 96–97, 306 (2015).

    Article  Google Scholar 

  9. P. P. Khvostenko et al., Fusion Eng. Des. 146, 1108 (2019).

    Article  Google Scholar 

  10. V. V. Alikaev et al., Sov. J. Plasma Phys. 14, 601 (1988).

    Google Scholar 

  11. D. R. Ernst et al., in Electronic Proceedings of the 27th IAEA Fusion Energy Conference, Ahmedabad, India, October 22–28, 2018. https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202018/fec2018-preprints/preprint0580.pdf.

  12. C. C. Petty et al., Nucl. Fusion 59, 112002 (2019).

  13. T. Klinger et al., Nucl. Fusion 59, 112004 (2019).

  14. S. A. Bozhenkov et al., in Proceedings of the 61st Annual Meeting of the APS Division of Plasma Physics, Fort Lauderdale, FL, USA, October 21–25, 2019, Vol. 64, No. 11, YP10.00058. http://meetings.aps.org/Meeting/DPP19/Session/YP10.58.

  15. Yu. N. Dnestrovskii, D. P. Kostomarov, and N. V. Skrydlov, Sov. Tech. Phys. 8, 691 (1963).

    Google Scholar 

  16. R. Prater, Phys. Plasmas 11, 2349 (2004).

    Article  ADS  Google Scholar 

  17. G. V. Pereverzev and P. N. Yushmanov, IPP Report 5/42 (Max-Planck-Inst. Plasmaphys., Garching, 1991).

    Google Scholar 

  18. Yu. N. Dnestrovskii, A. Yu. Dnestrovskii, S. E. Lysenko, and S. V. Cherkasov, Plasma Phys. Rep. 28, 887 (2002).

    Article  ADS  Google Scholar 

  19. I. N. Roy et al., EPJ Web of Conf. 149, 03021 (2017).

  20. Yu. N. Dnestrovskii et al., Probl. Atom. Sci. Techn., Ser.: Thermonuclear Fusion 36 (4), 45 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank N.A. Kirneva for her active help and useful discussions in preparing the work for publication. The program of experiments at the T-10 is supported by Rosatom State Corporation.

Funding

Data processing and modeling are supported by the Russian Science Foundation, project no. 19-12-00312. The work of Yu.N. Dnestrovskij and D.Yu. Sychugov was supported by the Russian Foundation for Basic Research, grant no. 20-07-00391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Dnestrovskij.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dnestrovskij, Y.N., Danilov, A.V., Dnestrovskij, A.Y. et al. Transport Models for Plasma Heating with Second Harmonic of Electron-Cyclotron Frequency. Phys. Atom. Nuclei 85 (Suppl 1), S34–S49 (2022). https://doi.org/10.1134/S1063778822130051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822130051

Keywords:

Navigation