Skip to main content
Log in

Impact behavior of hydroxyapatite reinforced polyethylene composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite particulate reinforced high density polyethylene composite (HA-HDPE) has been developed as a bone replacement material. The impact behavior of the composites at 37 °C has been investigated using an instrumented falling weight impact testing machine. The fracture surfaces were examined using SEM and the fracture mechanisms are discussed. It was found that the fracture toughness of HA-HDPE composites increased with HDPE molecular weight, but decreased with increasing HA volume fraction. Examination of fracture surfaces revealed weak filler/matrix interfaces which can debond easily to enable crack initiation and propagation. Increasing HA volume fraction increases the interface area, and more cracks can form and develop, thus decreasing the impact resistance of the composites. Another important factor for the impact behavior of the composites is the matrix. At higher molecular weight, HDPE is able to sustain more plastic deformation and dissipates more impact energy, hence improving the impact property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman and J. Abram, Biomaterials 2 (1981) 185.

    Google Scholar 

  2. W. Bonfield, J. C. Behiri, C. Doyle, J. Bowman and J. Abram, in “Biomaterials and Biomechanics 1983”, edited by P. Ducheyne, G. Van der Perre and A. E. Aubert (Elsevier Science Publishers B.V., Amsterdam, 1984) p. 421.

    Google Scholar 

  3. W. Bonfield, J. Biomed. Eng. 10 (1988) 522.

    Google Scholar 

  4. W. Bonfield, in “Polymers in Medicine III”, edited by C. Migliaresi et al. (Elsevier Science Publishers B.V., Amsterdam, 1988) p. 139.

    Google Scholar 

  5. R. N. Downes, S. Vardy, K. E. Tanner and W. Bonfield, Bioceramics 4 (1991) 239.

    Google Scholar 

  6. K. E. Tanner, R. N. Downes and W. Bonfield, Brit. Ceram. Trans. 93 (1994) 104.

    Google Scholar 

  7. J. L. Dornhoffer, Laryngoscope 108 (1998) 531.

    Google Scholar 

  8. J. Abram, J. Bowman, J. C. Behiri and W. Bonfield, Plast. Rubber Proc. Appl. 4 (1984) 261.

    Google Scholar 

  9. M. Wang, D. Porter and W. Bonfield, Brit. Ceram. Trans. 93 (1994) 91.

    Google Scholar 

  10. J. Suwanprateeb, K. E. Tanner, S. Turner and W. Bonfield, J. Mater. Sci: Mater. Med. 6 (1995) 804.

    Google Scholar 

  11. J. Suwanprateeb, K. E. Tanner, S. Turner and W. Bonfield, J. Biomed. Mater. Res. 39 (1998) 16.

    Google Scholar 

  12. J. Suwanprateeb, K. E. Tanner, S. Turner and W. Bonfield, J. Mater. Sci: Mater. Med. 8 (1997) 469.

    Google Scholar 

  13. P. T. Ton That, K. E. Tanner and W. Bonfield, J. Biomed. Mater. Res. 51 (2000) 453.

    Google Scholar 

  14. P. T. Ton That, K. E. Tanner and W. Bonfield, ibid. 51 (2000) 461.

    Google Scholar 

  15. P. J. Hogg, J. Behiri, A. Brandwood, J. Bowman and W. Bonfield, Proc. Comp. in Biomed. Eng. (Plastic and Rubber Institute, London, 1985) 29 1

    Google Scholar 

  16. K. Friedrich and U. A. Karsch, J. Mater. Sci. 16 (1981) 2167.

    Google Scholar 

  17. H. H. Kausch, Ph. Beguelin and M. Fischer, Mech. Compos. Mater. 36 (2000) 177.

    Google Scholar 

  18. R. Walter, K. Friedrich, V. Privalko and A. Savadori, J. Adhesion 64 (1997) 87.

    Google Scholar 

  19. Q. Fu and G. Wang, Polym. Eng. Sci. 32 (1992) 94.

    Google Scholar 

  20. Z. Bartczak, A. S. Argon, R. E. Cohen and M. Weinberg, Polymer 40 (1999) 2347.

    Google Scholar 

  21. J. Jancar, A. T. Dibenedetto and A. Dianselmo, Polym. Eng. Sci. 33 (1993) 559.

    Google Scholar 

  22. P. K. Mallick, in “Comprehensive Composite Materials, Vol. 2, Polymer Matrix Composites” (Elsevier Science Ltd., Amsterdam, 2000) p. 291.

    Google Scholar 

  23. E. Fekete, S. Z. Molnar, G. M. Kim and G. H. Michler, J. Macromol. Sci.-Phys. B38 (1999) 885.

    Google Scholar 

  24. S. Deb, M. Wang, K. E. Tanner and W. Bonfield, J. Mater. Sci: Mater. Med. 7 (1996) 191.

    Google Scholar 

  25. F. J. Guild and W. Bonfield, Biomaterials 14 (1993) 985.

    Google Scholar 

  26. F. J. Guild and W. Bonfield, J. Mater. Sci: Mater. Med. 9 (1998) 497.

    Google Scholar 

  27. A. Savadori, M. Scapin and R. Walter, Macromol. Symp. 108 (1996) 183.

    Google Scholar 

  28. J. Suwanprateeb, Polym.-Plast. Technol. Eng. 39 (2000) 83.

    Google Scholar 

  29. S. C. Tjong, R. K. Y. Li and T. Cheung, Polym. Eng. Sci. 37 (1997) 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Tanner, K.E. Impact behavior of hydroxyapatite reinforced polyethylene composites. Journal of Materials Science: Materials in Medicine 14, 63–68 (2003). https://doi.org/10.1023/A:1021553504549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021553504549

Keywords

Navigation