Skip to main content
Log in

Soil Phosphorus and Potassium Mapping Using a Spatial Correlation Model Incorporating Terrain Slope Gradient

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Variable-rate fertilizer application requires knowledge of the spatial distribution of soil nutrients within fields. Grid soil sampling might be used for acquiring this information, but is often too expensive for resolving spatial patterns in soil nutrients at the scale of precision fertilizer application. The objective of this study was to determine whether grid sampling efficiency can be improved using cokriging estimates with slope gradient as a secondary variable, which is easily obtained from high-resolution digital elevation models. Soils in two northern Montana wheat fields were sampled at the nodes of a 100-m diagonal grid. Soil test phosphorus and potassium maps were constructed with kriging and cokriging. Co-kriging uses the spatial correlation between two variables to predict for the less intensively sampled variable of interest, often with less estimation error than a univariate method such as kriging. The average estimation variance for cokriging compared to kriging was reduced for all values of the correlation considered. The additional complexity of cokriging might be justified provided a secondary variable exists that is spatially cross correlated with the primary variable of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, T. C. and Gatrell, A. C. 1995. Interactive Spatial Data Analysis (Addison Wesley Longman Limited, Essex, England), p. 162–166, 176–181, 213–215.

    Google Scholar 

  • Bhatti, A. U., Mulla, D. J. and Frazier, B. E. 1991. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and Thermatic Mapper images. Remote Sensing of Environment 37, 181–191.

    Google Scholar 

  • Bresler, E. and Laufer, A. 1988. Statistical inferences of soil properties and crop yields as spatial random functions. Soil Sci. Soc. Am. J. 52, 1234–1244.

    Google Scholar 

  • Caprio, J. M., Cooksey, D. I., Jacobsen, J. S., Nielsen, G. A. and Roche, R. R. 1994. MAPS Atlas Version 5.0, Montana State University Extension Bulletin 125, Bozeman, MT.

  • Entz, T. and Chang, C. 1991. Evaluation of soil sampling schemes for geostatistical analyses: A case study for bulk density. Can J. Soil Sci. 71, 165–176.

    Google Scholar 

  • Gessler, P. E., Moore, I. D., McKenzie, N. J. and Ryan, P. J. 1995. Soil-landscape modelling and spatial prediction ofsoil attributes. Int J. Geog. Inf. Sys. 9(4), 421–432.

    Google Scholar 

  • Gessler, P. E., Chadwick, O. A., Chamran, R., Althouse, L. and Holmes, K. 2000. Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64, 2046–2056.

    Google Scholar 

  • Laslett, G. M., McBratney, A. B., Pahl, P. J. and Hutchinson, M. F. 1987. Comparison ofse veral spatial prediction methods for soil pH. J. Soil Sci. 38, 325–341.

    Google Scholar 

  • McKenzie, N. J. and Ryan, P. J. 1999. Spatial prediction ofsoil properties using environmental correlation. Geoderma 89(1–2), 67–94.

    Google Scholar 

  • Moore, I. D., Gessler, P. E., Nielsen, G. A. and Peterson, G. A. 1993. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 57, 443–452.

    Google Scholar 

  • Morkoc, F., Biggar, J. W., Nielsen, D. R. and Myers, D. E. 1987. Kriging with generalized covariances. Soil Sci. Soc. Am. J. 51(5), 1126–1131.

    Google Scholar 

  • Odeh, I. O. A., McBratney, A. B. and Chittleborough, D. J. 1994. Spatial prediction ofsoil properties from landform attributes derived from a digital elevation model. Geoderma 63(3–4), 197–214.

    Google Scholar 

  • Pozdnyakova, L. and Zhang, R. 1999. Geostatistical analyses ofsoil salinity in a large field. Precision Agriculture 1(2), 153–165.

    Google Scholar 

  • Tabios, G. Q. and Salas, J. D. 1985. A comparative analysis oftechniques for spatial interpolation of precipitation. Water Resources Bulletin 21, 365–380.

    Google Scholar 

  • Trangmar, B. B., Yost, R. S. and Uehara, G. 1986. Spatial dependence and interpolation ofsoil properties in West Sumatra, Indonesia: II. Co-regionalization and co-kriging. Soil Sci. Soc. Am. J. 50, 1396–1400.

    Google Scholar 

  • Varvel, G. E., Schlemmer, M. R. and Schepers, J. S. 1990. Precision Agriculture 1, 291–300.

    Google Scholar 

  • Veseth, R. and Montagne, C. 1980. Geologic parent material ofMontana soils. Montana Agric. Exp. Sta. Bulletin 721 (Montana St. Univ., Bozeman, MT and USDA-SCS, Bozeman, MT).

    Google Scholar 

  • Wollenhaupt, N. C., Wolkowski, R. P. and Clayton, M. K. 1994. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J. Prod. Agric. 7, 441–448.

    Google Scholar 

  • Wollenhaupt, N. C., Mulla, D. J. and Gotway-Crawford, C. A. 1997. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, edited by F. J. Pierce and E. J. Sadler (Madison, WI), p. 19–54.

  • Yates, S. R. and Warrick, A. W. 1987. Estimating soil water content using cokringing. Soil Sci. Soc. Am. J.51, 23–30.

    Google Scholar 

  • Zhang, R., Shouse, P. and Yates, S. 1997. Use of pseudo-cross variograms and co-kriging to improve estimates of soil solute concentrations. Soil Sci. Soc. Am. J. 61(5), 1342–1347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozar, B., Lawrence, R. & Long, D.S. Soil Phosphorus and Potassium Mapping Using a Spatial Correlation Model Incorporating Terrain Slope Gradient. Precision Agriculture 3, 407–417 (2002). https://doi.org/10.1023/A:1021549107075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021549107075

Navigation