Skip to main content
Log in

Simulation of a Flow of Spontaneously Condensing Moist Steam in Laval Nozzles

  • Published:
High Temperature Aims and scope

Abstract

A method is suggested for the simulation of the evolution of the size distribution of droplets as a result of simultaneous processes of nucleation (spontaneous condensation), heterogeneous condensation/evaporation, and coagulation. The results of analysis of the effect of initial moisture on spontaneous condensation of steam in transonic nozzles are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hill, P.G., J. Fluid Mech., 1966, vol. 25, no. 3, p. 593.

    Google Scholar 

  2. Sternin, L.E., Osnovy gazodinamiki dvukhfaznykh techenii v soplakh (The Fundamentals of Gas Dynamics of Two-Phase Flows in Nozzles), Moscow: Mashinostroenie, 1974.

    Google Scholar 

  3. Boldarev, A.S., Gasilov, V.A., Zaichik, L.I., and Ol'khovskaya, O.G., Teplofiz. Vys. Temp., 1998, vol. 36, no. 1, p. 135 (High Temp. (Engl. transl.), vol. 36, no. 1, p. 131).

    Google Scholar 

  4. Zaichik, L.I., Lebedev, A.B., Savel'ev, A.M., and Starik, A.M., Teplofiz. Vys. Temp., 2000, vol. 38, no. 1, p. 81 (High Temp. (Engl. transl.), vol. 36, p. 77).

    Google Scholar 

  5. White, A.J. and Hounslow, H.J., Int. J. Heat Mass Transfer, 2000, vol. 43, no. 11, p. 1873.

    Google Scholar 

  6. Piskunov, V.N. and Golubev, A.I., Dokl. Ross. Akad. Nauk, 1999, vol. 366, no. 3, p. 341.

    Google Scholar 

  7. Piskunov, V.N., Teoreticheskie modeli kinetiki formirovaniya aerozolei (Theoretical Models of the Kinetics of Aerosol Formation), Sarov: Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics, 2000.

    Google Scholar 

  8. Park, S.H., Lee, K.W., Otto, E., and Fissan, H., J. Aerosol Sci., 1999, vol. 30, no. 1, p. 3.

    Google Scholar 

  9. Talbot, L., Cheng, R.K., Schefer, R.W., and Willis, D.R., J. Fluid Mech., 1980, vol. 101, no. 4, p. 737.

    Google Scholar 

  10. Otto, E., Fissan, H., Park, S.H., and Lee, K.W., J. Aerosol Sci., 1999, vol. 30, no. 1, p. 17.

    Google Scholar 

  11. Voloshchuk, V.M. and Sedunov, Yu.S., Protsessy coagulyatsii v dispersnykh sistemakh (Coagulation Processes in Dispersed Systems), Leningrad: Gidrometeoizdat, 1975.

    Google Scholar 

  12. Friedlander, S.K. and Wang, C.S., J. Colloid Sci., 1966, vol. 22, p. 126.

    Google Scholar 

  13. Skillings, S.A., Walters, P.T., and Moore M.J., A Study of Supercritical Heat Addition as Potential Loss Mechanism in Condensing Steam Turbines, I Mech. Eng. Conf. C259/87, 1987, p. 125.

  14. Deich, M.E. and Filippov, G.A., Gazodinamika dvukhfaznykh sred (Gas Dynamics of Two-Phase Media), Moscow: Energoatomizdat, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avetisyan, A.R., Alipchenkov, V.M. & Zaichik, L.I. Simulation of a Flow of Spontaneously Condensing Moist Steam in Laval Nozzles. High Temperature 40, 872–880 (2002). https://doi.org/10.1023/A:1021481317973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021481317973

Keywords

Navigation