Skip to main content
Log in

Design of a thermal desalination system with spray flash drum and condenser under vacuum based on droplet dynamics

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2021

This article has been updated

Abstract

A thermal desalination system with a flash drum, a spray-nozzle system, and a condenser under vacuum is designed. Theoretical yield of water vapor in the vacuum flash drum has been evaluated based on conservation equations of mass and energy in the range from 0.35 % to 8.37% at temperature of saline feed water from 40 °C to 60 °C, salinity from 0.035 to 0.04 kg/kg, feed flow rate of 40000 kg/day, and supersaturation from 2 °C to 50 °C. A thermal-fluid model has been adopted to simulate the dynamics of saline water droplets for flash evaporation under vacuum. At a moderate droplet velocity, the model predicts time scales for evaporation from 0.5 s to 1 s with yield of flashing vapor from 69.24 % to 84.59 % at droplet radius from 100 μm to 150 μm. The yield increases with the increase in supersaturation and feed temperature, whereas it increases appreciably with the decrease in droplet size. The design is based on the evaporation time scale and the theoretical yield. Both droplet dynamics for flash evaporation and theoretical yield have been validated with results from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

Abbreviations

A :

orifice area of the nozzle, m2

B :

liquid flow rate, kg h-1

c p :

specific heat, J kg-1 °C-1

D fd :

diameter of flash drum, m

D saut :

Sauter mean diameter of droplet, m

D s :

shell diameter, m

Dc v :

diffusion coefficient of water vapor in air, m2 s-1

D :

diameter of droplet, mm

F :

feed flow rate, kg h-1

f dis :

friction factor of discharge pipeline

H :

specific enthalpy, kJ kg-1

\({H}_{V}^{sw}\) :

latent heat of vaporization of seawater, kJ kg-1

\({H}_{V}^{w}\) :

latent heat of vaporization of water, kJ kg-1

h :

heat transfer coefficient, W m-2 °C-1

h B :

height of saturated saline water at flash drum, m

h c :

condensation film coefficient, W m-2 °C-1

h m :

mass transfer coefficient, m s-1

ht fd :

height of flash drum, m

K valve :

loss coefficient of discharge valve

k :

thermal conductivity, W m-1 °C-1

kf :

discharge coefficient of nozzle

L :

length of tube, m

M :

molecular weight, kg kmol-1

m :

mass of droplet, kg

:

mass flowrate, kg h-1

N d :

number of droplets

N r :

average number of tubes in a vertical tube row

N t :

total number of tubes in the bundle

P :

pressure, Pa, N m-2

Pr :

Prandtl number, dimensionless

Re :

Reynolds number, dimensionless

r :

radius of droplet, μm

Sc :

Schmidt number, dimensionless

s :

salinity, kg kg-1

T :

temperature, °C

U :

overall heat transfer coefficient, W m-2 °C-1

V :

vapor flow rate, kg h-1

W c :

condensate flowrate, kg s-1

Δ :

differential operator

Γ :

condensate flow per unit length of tube, kg m-1 s-1

λ :

latent heat of vaporization, kJ kg-1

μ :

viscosity, kg m-1 s-1

θ :

cone angle of nozzle, rad

ρ :

density, kg m-3

σ :

Surface tension of saline water, mN m-1

τ e :

time scale of evaporation, s

Ω D :

collision integral

dis :

discharge

F :

feed

fd :

flash drum

i :

inside

L :

liquid

l :

liquid

o :

outside

s :

surface

sat :

saturation

V :

vapor

v :

vapor

vac :

vacuum

sw :

saline water

w :

water

References

  1. Semiat R (2000) Desalination: present and future. Water Int 25(1):54–65. https://doi.org/10.1080/02508060008686797

    Article  Google Scholar 

  2. Kabeel AE, El-Said EMS (2013) Technological aspects of advancement in low-capacity solar thermal desalination units. Int J Sustain Energy 32(5):315–332. https://doi.org/10.1080/14786451.2012.757613

    Article  Google Scholar 

  3. Miyatake O, Koito Y, Tagawa K, Maruta Y (2001) Transient characteristics and performance of a novel desalination system based on heat storage and spray flashing. Desalination 137(1–3):157–166. https://doi.org/10.1016/S0011-9164(01)00214-4

    Article  Google Scholar 

  4. Uehara H, Stuhltrager E, Miyara A, Koga T, Hino M (2016) A study of the spray flash desalination (effect of nozzle shape). In Q. Chen, K. Thua, T.D. Bui, Y. Li, K.C. Ng, K.J. Chua, Development of a model for spray evaporation based on droplet analysis, Desalination 399:69–77. https://doi.org/10.1016/j.desal.2016.08.017

    Article  Google Scholar 

  5. Muthunayagam AE, Ramamurthi K, Paden JR (2005) Low temperature flash vaporization for desalination. Desalination 180(1–3):25–32. https://doi.org/10.1016/j.desal.2004.12.028

    Article  Google Scholar 

  6. Damy G, Marvaldi J (1987) Some investigation on the possibility of using ocean thermal gradient (OTG) for seawater desalination. Desalination 67:197–214. https://doi.org/10.1016/0011-9164(87)90244-X

    Article  Google Scholar 

  7. Ikegami Y, Sasaki H, Gouda T, Uehara H (2006) Experimental study on a spray flash desalination (influence of the direction of injection). Desalination 194(1):81–89. https://doi.org/10.1016/j.desal.2005.10.026

    Article  Google Scholar 

  8. Goto S, Yamamoto Y, Sugi T, Yasunaga T, Ikegami Y, Nakamura M (2008) A simulation model of spray flash desalination system. IFAC Proc 41(2):15909–15914. https://doi.org/10.3182/20080706-5-KR-1001.02689

    Article  Google Scholar 

  9. Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J (2020) Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. J Therm Anal Calorim 140:1935–1944. https://doi.org/10.1007/s10973-019-08945-8

    Article  Google Scholar 

  10. Guo G, Deng H, Zhu C, Ji Z (2020) Non-volatile fraction effects in dispersed vacuum spray flash evaporation. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Volume 11: Heat Transfer and Thermal Engineering 16–19. https://doi.org/10.1115/IMECE2020-23506

  11. Thakkar H, Sadasivuni KK, Ramana PV, Panchal H, Suresh M, Israr M, Elklawy M, AlmElDin H (2020) Comparative analysis of the use of flash evaporator and solar still with a solar desalination system. Int J Ambient Energy Online. https://doi.org/10.1080/01430750.2020.1712242

  12. Hou J, Cheng H, Wang D, Gao X, Gao C (2010) Experimental investigation of low temperature distillation coupled with spray evaporation. Desalination 258(1–3):5–11. https://doi.org/10.1016/j.desal.2010.03.030

    Article  Google Scholar 

  13. Chen Q, Thua K, Bui TD, Li Y, Ng KC, Chua KJ (2016) Development of a model for spray evaporation based on droplet analysis, Desalination 399: 69–77. https://doi.org/10.1016/j.desal.2016.08.017

  14. Araghi AH, Khiadani M, Sadafi MH, Hooman K (2017) A numerical model and experimental verification for analysing a new vacuum spray flash desalinator utilising low grade energy. Desalination 413:109–118. https://doi.org/10.1016/j.desal.2017.03.014

    Article  Google Scholar 

  15. Kumar A, Kant R, Samsher (2021) Review on spray‑assisted solar desalination: concept, performance and modeling. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05846-7

  16. Alrowais R, Qian C, Burhan M, Ybyraiymkul D, Shahzad MW, Ng KC (2020) A greener seawater desalination method by direct-contact spray evaporation and condensation (DCSEC): Experiments. Appl Thermal Eng 179:115629. https://doi.org/10.1016/j.applthermaleng.2020.115629

    Article  Google Scholar 

  17. ElHelw M, El-Maghlany WM, El-Ashmawy WM (2020) Novel sea water desalination unit utilizing solar energy heating system. Alex Eng J 59(2):915–924

    Article  Google Scholar 

  18. Smith JD, Cappa CD, Drisdell WS, Cohen RC, Saykally RJ (2006) Raman thermometry measurements of free evaporation from liquid water droplets. J Am Chem Soc 128(39):12892–12898. https://doi.org/10.1021/ja063579v

    Article  Google Scholar 

  19. Liu L, Bi QC, Li HX (2009) Experimental investigation on flash evaporation of saltwater droplets released into vacuum. Microgravity Sci Technol 21(Suppl 1):S255–S260. https://doi.org/10.1007/s12217-009-9140-x

    Article  Google Scholar 

  20. Sharqawya MH, Lienhard VJH, Zubair SM (2010) Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat 16(1–3):354–380. https://doi.org/10.5004/dwt.2010.1079

    Article  Google Scholar 

  21. Mugele RA, Evans HD (1951) Droplet size distribution in sprays. Ind Eng Chem 43(6):1317–1324. https://doi.org/10.1021/ie50498a023

    Article  Google Scholar 

  22. Solomon KH, Kincaid DC, Bezdek JC (1985) Trans ASAE 28(6):1966–1974. https://doi.org/10.13031/2013.32550

  23. Liljedahl LA (1971) Effect of fluid properties and nozzle parameters on drop size distribution from fan spray nozzles. Retrospective Theses and Dissertations 4476. http://lib.dr.iastate.edu/rtd/4476

  24. Dorman RG (1952) The atomization of liquid in a flat spray. Br J Appl Phys 3:189–192. https://doi.org/10.1088/0508-3443/3/6/305

    Article  Google Scholar 

  25. Nuyttens D, Schampheleire MD, Verboven P, Brusselman E, Dekeyser D (2009) Droplet size and velocity characteristics of agricultural sprays. Trans ASABE 52(5):14711480. https://doi.org/10.13031/2013.29127

  26. Ranz WE, Marshall WR (1951) Evaporation from drops 1. Chem Eng Prog 48(3):141–146

    Google Scholar 

  27. Dutta BK (2009) Principles of mass transfer and separation processes. Wiley

    Book  Google Scholar 

  28. Sinnott R (2005) Couslon & Richardson’s chemical engineering series: chemical engineering design, 5th edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Acknowledgments

This work is based on a project proposed by Clean Energy Resources Pvt Ltd. Kolkata, India. The authors would like to thank Prof Mandira Mukherjee and Mr. Yuvraj Aggarwal for the fruitful discussions and tips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Karmakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to some typographical errors in editing, mainly dash ( - ) symbols are missing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Kar, D., Ahmad, A. et al. Design of a thermal desalination system with spray flash drum and condenser under vacuum based on droplet dynamics. Heat Mass Transfer 58, 933–948 (2022). https://doi.org/10.1007/s00231-021-03152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03152-4

Keywords

Navigation