Skip to main content
Log in

Chemical Polymorphism of the Cuticular Lipids of the Cabbage White Pieris rapae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The epicuticular composition of different body parts of the Cabbage White, Pieris rapae L., was investigated using GC and GC/MS. The major group of components, hydrocarbons, occurs in two distinct classes, which show different distributions on the cuticle of the insects. Unbranched shorter chain compounds (C21 to C31, linear group) dominate on body, head and wings, while longer chain, polymethyl-branched compounds (C35 to C39, branched group) are predominantly found on the antennae. Several other components like 1,3-pentacosadiene and oxygenated aliphatic compounds occur in minor amounts on the cuticle. The reason for this polymorphism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Buckner, J. S. Nelson, D. R., and Mardaus, M. C. 1994. The lipid composition of the wax particles from adult whiteflies, Bermisia tabaci and Trialeurodes vaporariorum. Insect Biochem. Molec. Biol. 24:977–987.

    Article  CAS  Google Scholar 

  • Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24:1845–1866.

    Article  CAS  Google Scholar 

  • Francis, G. W. and Veland K. 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. 219:379–384.

    Article  CAS  Google Scholar 

  • Gibbs, A. G. 2002. Lipid melting and cuticular permeability: New insights into an old problem. J. Insect Physiol. 48:391–400.

    Article  CAS  Google Scholar 

  • Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication. pp. 179–226 in D. W. Stanley-Samuelson and D. R. Nelson (eds.), Insect Lipids: Chemistry, Biochemistry and Biology, University of Nebraska Press, Lincoln, Nebraska.

    Google Scholar 

  • Kaissling, K. E. 2001. Olfactory perireceptor and receptor events in moths: A kinetic model. Chem. Senses 26:125–150.

    Article  CAS  Google Scholar 

  • Kanaujia, S. and Kaissling, K. 1985. Interactions of pheromone with moth antennae: Adsorption, desorption and transport. J. Insect Physiol. 31:71–81.

    Article  CAS  Google Scholar 

  • Nelson, D. R. and Blomquist, R. J. 1995. Insect waxes: pp. 1–90 in R. J. Hamilton (ed.), Waxes: Chemistry and Molecular Biology and Functions, The Oily Press, Dundee.

    Google Scholar 

  • Schulz, S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647.

    Article  CAS  Google Scholar 

  • Young, H. P., Larabee, J. K., Gibbs, A. G., and Schal, C. 2000. Relationship between tissue-specific hydrocarbon profiles and lipid melting temperatures in the cockroach Blattella germanica J. Chem. Ecol. 26:1245–1263.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsene, C., Schulz, S. & Van Loon, J.J.A. Chemical Polymorphism of the Cuticular Lipids of the Cabbage White Pieris rapae . J Chem Ecol 28, 2627–2631 (2002). https://doi.org/10.1023/A:1021474820601

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021474820601

Navigation