Skip to main content
Log in

A New Approach to the Evaluation of Transport Properties of Azeotropic and Quasi-Azeotropic Refrigerant Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Azeotropic and quasi-azeotropic mixtures of organic compounds could become the most effective candidates as replacement fluids in refrigeration devices and heat pumps. Following the development of effective prediction formulas for several families of pure organic compounds, in this paper the evaluation of transport properties of liquid mixtures is approached from a rather different point of view. Azeotropic and near-azeotropic mixtures are treated as pure compounds rather than as a combination of several pure substances. This is now possible, having developed a single, specialized formula for both the liquid thermal conductivity and the dynamic viscosity. The prediction method requires the knowledge of only a few equilibrium properties of the mixture to be analyzed and thus is a simple and powerful tool for the evaluation of alternative refrigerants. Each formula has been tested against experimental data and shows deviations below those required for engineering purposes. Important results have also been achieved on applying the same equations to quasi-azeotropic mixtures with deviations comparable to those for azeotropic mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Didion, Proc Int. Sem., New Technology in Refrigeration (Padua, Italy, 1994), p. 173.

    Google Scholar 

  2. G. Latini, G. Passerini, and F. Polonara, Proc. 1996 Int. Refr. Conf. (Purdue University, West Lafayette, IN, 1996), p. 423.

    Google Scholar 

  3. M. Huber, J. Gallagher, M. McLinden, and G. Morrison, NIST Therodynamic Properties of Refrigerants and Refrigerant Mixtures (REFPROP), NIST Standard Reference Database Version 5.1 (NIST, Boulder, CO, 1996).

    Google Scholar 

  4. G. Latini, G. Passerini, and F. Polonara, Int. J. Thermophys. 17:85 (1996).

    Google Scholar 

  5. G. Latini, G. Passerini, F. Polonara, and G. Vitali, in Thermal Conductivity 23, K. E. Wilkes, ed. (Technomic, Lancaster, PA, 1996), p. 613.

    Google Scholar 

  6. N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E. Totskii, Handbook of Thermal Conductivity of Liquids and Gases (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  7. J. Yata, T. Minamiyama, and S. Tanaka, Int. J. Thermophys. 5:209 (1984).

    Google Scholar 

  8. I. R. Shankland, AIChE Spring National Meeting, Orlando, FL (1990).

  9. E. Hahne, U. Gross, and Y. W. Song, Int. J. Thermophys. 9:687 (1989).

    Google Scholar 

  10. J. Yata, C. Kawashima, M. Hori, and T. Minamiyama, Proc. 2nd Asian Thermophys. Prop. Conf. (Sapporo, Japan, 1989), p. 201.

  11. U. Gross, Y. W. Song, J. Kallweit, and E. Hahne, Proc. IIF/IIR Meet. Comm. B1 (Herzlia, Israel, 1990), p. 103.

  12. U. Gross, Y. W. Song, and E. Hahne, Int. J. Thermophys. 13:957 (1992).

    Google Scholar 

  13. M. J. Assael and E. Karagiannidis, Int. J. Thermophys. 14:183 (1993).

    Google Scholar 

  14. O. B. Tsvetkov, Y. A. Laptev, and A. G. Asambaev, Int. J. Thermophys. 15:203 (1994).

    Google Scholar 

  15. J. Yata, M. Hori, T. Kurahashi, and T. Minamiyama, Fluid Phase Equil. 80:287 (1992).

    Google Scholar 

  16. M. Papadaki and W. A. Wakeham, Int. J. Thermophys. 14:1215 (1993).

    Google Scholar 

  17. L. C. Wilson, W. V. Wilding, G. M. Wilson, R. L. Rowley, V. M. Felix, and T. Chisolm-Carter, Fluid Phase Equil. 80:167 (1992).

    Google Scholar 

  18. W. H. Tauscher, ASHRAE J. 11:97 (1969).

    Google Scholar 

  19. M. Ross, J. P. M. Trusler, W. A. Wakeham, and M. Zalaf, Proc. IIF/IIR Meet. Comm. B1 (Herzlia, Israel, 1990), p. 89.

  20. A Laesecke, R. A. Perkins, and C. A. Nieto de Castro, Fluid Phase Equil. 80:263 (1992).

    Google Scholar 

  21. R. A. Perkins, A. Laesecke, and C. A. Nieto de Castro, Fluid Phase Equil. 80:275 (1992).

    Google Scholar 

  22. M. Papadaki, M. Schmitt, A. Seiz, K. Stephan, B. Taxis, and W. A. Wakeham, Int. J. Thermophys. 14:173 (1993).

    Google Scholar 

  23. A. T. Sousa, P. S. Fialho, C. A. Nieto de Castro, R. Tufeu, and B. Le Neindre, Int. J. Thermophys. 13:383 (1992).

    Google Scholar 

  24. C. Oliveira, M. Papadaki, and W. A. Wakeham, Proc. 3nd Asian Thermophys. Prop. Conf. (Beijing, China, 1992), p. 32.

  25. S. H. Kim, D. S. Kim, M. S. Kim, and S. T. Ro, Int. J. Thermophys. 14:937 (1993).

    Google Scholar 

  26. M. J. Assael, E. Karagiannidis, and W. A. Wakeham, Int. J. Thermophys. 13:735 (1992).

    Google Scholar 

  27. V. Geller, M. Paulaitis, D. Bivens, and A. Yokozeki, Proc. IIF/IIR Meet. Comm. B1/B2 (Gand, Belgium, 1993), p. 227.

  28. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases & Liquids, 4th ed. (McGraw-Hill, New York, 1978).

    Google Scholar 

  29. C. F. Beaton and G. F. Hewitt, Physical Property Data for the Design Engineer (Hemisphere, New York, 1989).

    Google Scholar 

  30. G. Latini and F. Polonara, in Non-CO 2 Greenhouse Gases, J. van Ham, L. J. H. M. Janssen, and R. J. Swart, eds. (Kluwer, Dordrecht, The Netherlands, 1994), p. 357.

    Google Scholar 

  31. G. Latini, G. Passerini, and F. Polonara, Fluid Phase Equil. 125:205 (1996).

    Google Scholar 

  32. A. Kumagai and S. Takahashi, Int. J. Thermophys. 12:105 (1991).

    Google Scholar 

  33. Thermophysical Properties of Refrigerants (ASHRAE, New York, 1976).

  34. D. E. Diller, A. S. Aragon, and A. Laesecke, Fluid Phase Equil. 88:251 (1993).

    Google Scholar 

  35. T. Okubo and A. Nagashima, Int. J. Thermophys. 13:401 (1992).

    Google Scholar 

  36. T. W. Phillips and K. P. Murphy, ASHRAE Trans. 76(II):146 (1970).

    Google Scholar 

  37. P. Ripple and O. Matar, J. Chem. Eng. Data 38:560 (1993).

    Google Scholar 

  38. C. M. B. P. Oliveira and W. J. Wakeham, Int. J. Thermophys. 14:1131 (1993).

    Google Scholar 

  39. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 15:591 (1994).

    Google Scholar 

  40. T. Okubo and A. Nagashima, Int. J. Thermophys. 13:931 (1992).

    Google Scholar 

  41. D. B. Bivens, A. Yokozeki, V. Z. Geller, and M. E. Paulaitis, Transport Properties and Heat Transfer of Alternatives for R502 and R22 (E. I. du Pont de Nemours, Wilmington, DE, 1994).

    Google Scholar 

  42. R. Krauss, J. Luettmer-Strathmann, J. M. H. Levelt Seggers, and K. Stephan, Int. J. Thermophys. 14:951 (1993).

    Google Scholar 

  43. I. R. Shankland, R. S. Basu, and D. P. Wilson, 1988 Int. Refrig. Conf. (Purdue University, West Lafayette, IN, 1988), p. 305.

    Google Scholar 

  44. A. Kumagai and S. Takahashi, Int. J. Thermophys. 14:339 (1993).

    Google Scholar 

  45. P. S. Van der Gulik, Int. J. Thermophys. 14:851 (1993).

    Google Scholar 

  46. M. J. Assael, S. K. Polimatidou, E. Vogel, and W. A. Wakeham, Int. J. Thermophys. 15:575 (1994).

    Google Scholar 

  47. T. Titani, Bull. Chem. Soc. (Japan) 2:5 (1927).

    Google Scholar 

  48. D. E. Diller and L. J. Van Poolen, Cryogenics 29:1063 (1989).

    Google Scholar 

  49. M. J. Assael and S. K. Polimatidou, Int. J. Thermophys. 15:779 (1994).

    Google Scholar 

  50. Landolt Bornstein, 6. Aufl., Bd. IV-1 (Springer-Verlag, Berlin 1955).

  51. R. Shankland, presented at AIChE Spring Nat. Meet., Orlando, FL (1990).

  52. Transport Properties of Suva 9100 Refrigerant (R410A) (Du Pont, Wilmington, DE, 1996).

  53. Transport Properties of Suva 95 Refrigerant (R508) (Du Pont, Wilmington, DE, 1996).

  54. A. Cavallini, Int. J. Refrig. 19:485 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latini, G., Passerini, G. & Polonara, F. A New Approach to the Evaluation of Transport Properties of Azeotropic and Quasi-Azeotropic Refrigerant Mixtures. International Journal of Thermophysics 20, 73–84 (1999). https://doi.org/10.1023/A:1021474029285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021474029285

Navigation