Skip to main content
Log in

Stochastic Thermal-Diffusion Forced Rayleigh Scattering

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The holographic grating technique of thermal-diffusion forced Rayleigh scattering (TDFRS) utilizes the Ludwig–Soret effect to induce a concentration modulation within a binary liquid. The signal generation is described in terms of a linear response formalism, and the memory function for the concentration mode g(t) and its Fourier transform, the diffusion susceptibility, are measured by means of pseudostochastic random binary sequences with flat power spectra in combination with fast Fourier transform and correlation techniques. For polydisperse polymer solutions the individual modes contribute proportional to their concentration to g(t), contrary to photon-correlation spectroscopy, where the correlation function is dominated by the high molar mass components. Other advantages of stochastic TDFRS are time-scale delocalization of dust spikes and frequency multiplexing. Measurements are reported on monodisperse and bimodal polystyrene in toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Thyagarajan and P. Lallemand, Opt. Commun. 26:54 (1978).

    Google Scholar 

  2. F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, and G. Pierattini, Appl. Phys. B44:103 (1987).

    Google Scholar 

  3. W. Köhler, J. Chem. Phys. 98:660 (1993).

    Google Scholar 

  4. F. Bloisi, Opt. Commun. 68:87 (1988).

    Google Scholar 

  5. P. Rossmanith and W. Köhler, Macromolecules 29:3203 (1996)

    Google Scholar 

  6. W. Köhler, C. Rosenauer, and P. Rossmanith, Int. J. Thermophys. 16:11 (1995).

    Google Scholar 

  7. W. Köhler and P. Rossmanith, J. Phys. Chem. 99:5838 (1995).

    Google Scholar 

  8. W. Köhler and B. Müller, J. Chem. Phys. 103:4367 (1995).

    Google Scholar 

  9. M. E. Schimpf and J. C. Giddings, J. Polym. Sci. Polym. Phys. B27:1317 (1989).

    Google Scholar 

  10. D. Ziessow, On-line Rechner in der Chemie (de Gruyter, Berlin, 1973).

    Google Scholar 

  11. D. Ziessow and B. Blümich, Ber. Bunsenges. Phys. Chem. 78:1168 (1974).

    Google Scholar 

  12. S. D. Stearns, Digitale Verarbeitung analoger Signale (Oldenburg, München, 1987).

    Google Scholar 

  13. W. Köhler and R. Schäfer, in press (1997).

  14. R. Schäfer, Ph.D. thesis (Johannes-Gutenberg Universität, Mainz, 1997).

  15. S. W. Provencher, Comput. Phys. Commun. 27:229 (1982).

    Google Scholar 

  16. A. Becker, W. Köhler, and B. Müller, Ber. Bunsenges. Phys. Chem. 99:600 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, R., Becker, A. & Köhler, W. Stochastic Thermal-Diffusion Forced Rayleigh Scattering. International Journal of Thermophysics 20, 1–18 (1999). https://doi.org/10.1023/A:1021461726559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021461726559

Navigation