Skip to main content
Log in

Thermodynamic Properties of Air from 60 to 2000 K at Pressures up to 2000 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A thermodynamic property formulation for standard dry air based upon experimental P–ρ–T, heat capacity, and speed of sound data and predicted values, which extends the range of prior formulations to higher pressures and temperatures, is presented. This formulation is valid for temperatures from the solidification temperature at the bubble point curve (59.75 K) to 2000 K at pressures up to 2000 MPa. In the absence of experimental air data above 873 K and 70 MPa, air properties were predicted from nitrogen data. These values were included in the fit to extend the range of the fundamental equation. Experimental shock tube measurements ensure reasonable extrapolated properties up to temperatures and pressures of 5000 K and 28 GPa. In the range from the solidification point to 873 K at pressures to 70 MPa, the estimated uncertainty of density values calculated with the fundamental equation for the vapor is ±0.1%. The uncertainty in calculated liquid densities is ±0.2%. The estimated uncertainty of calculated heat capacities is ±1% and that for calculated speed of sound values is ±0.2%. At temperatures above 873 K and 70 MPa, the estimated uncertainty of calculated density values is ±0.5%, increasing to ±1% at 2000 K and 2000 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. T Jacobsen, S. G. Penoncello, S. W. Beyerlein, W. P. Clarke, and E. W. Lemmon, Fluid Phase Equil. 79:113 (1992).

    Google Scholar 

  2. M. D. Panasiti, Thermophysical Properties of Air from 60 to 2000 K at Pressures Up to 2000 MPa, M.S. thesis (Department of Mechanical Engineering, University of Idaho, Moscow, 1996).

    Google Scholar 

  3. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15:59 (1976).

    Google Scholar 

  4. M. Jaeschke and A. E. Humphreys, The GERG Databank of High Accuracy Compressibility Factor Measurements, GERG Technical Monograph 4 (1990).

  5. G. C. Straty and D. E. Diller, J. Chem. Thermodyn. 12:927 (1980).

    Google Scholar 

  6. R. T Jacobsen, W. P. Clarke, S. W. Beyerlein, M. F. Rousseau, L. J. Van Poolen, and J. C. Rainwater, Int. J. Thermophys. 11:179 (1990).

    Google Scholar 

  7. S. G. Penoncello, R. T Jacobsen, and E. W. Lemmon, Adv. Cryo. Eng. 37:1115 (1992).

    Google Scholar 

  8. E. W. Lemmon, Development of a Freezing Liquid Line for Air, CATS Note 89-6) (Center for Applied Thermodynamic Studies, University of Idaho, Moscow, 1989).

    Google Scholar 

  9. W. Blanke, Messung der thermischen Zustandsgrossen von Luft im Zweiphasengebiet und seiner Umgebung, Dissertation for Dr. Ing. (Ruhr-Universität, Bochum, Germany, 1973).

    Google Scholar 

  10. W. J. Nellis, A. C. Mitchell, F. H. Ree, M. Ross, N. C. Holmes, R. J. Trainor, and D. J. Erskine, J. Chem. Phys. 95:5268 (1991).

    Google Scholar 

  11. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics, Final Report of the CODATA Task Group on Key Values for Thermodynamics (Hemisphere, New York, 1989).

    Google Scholar 

  12. R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15:735 (1986).

    Google Scholar 

  13. R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175 (1985).

    Google Scholar 

  14. E. W. Lemmon, R. T Jacobsen, S. G. Penoncello, and S. W. Beyerlein, Adv. Cryo. Eng. 39:1891 (1994).

    Google Scholar 

  15. E. A. Amagat, Ann. Chem. Phys. 29:68 (1893).

    Google Scholar 

  16. W. Blanke, Proc. 7th Symp. Thermophys. Prop., A. Cezairlizan, ed. (American Society of Mechanical Engineers, New York, 1977), p. 461.

    Google Scholar 

  17. L. Holborn and H. Schultze, Ann. Phys. 47:1089 (1915).

    Google Scholar 

  18. J. B. Howley, J. W. Magee, and W. M. Haynes, Int. J. Thermophys. 15:801 (1994).

    Google Scholar 

  19. A. Kozlov, Experimental Investigation of the Specific Volumes of Air in the 20–600°C Temperature Range and 20–700 Bar Pressure Range, Dissertation for Candidate of Technical Science (Moscow Power Engineering Institute, Moscow, 1968).

    Google Scholar 

  20. A. Michels, T. Wassenaar, J. M. H. Levelt Sengers, and W. de Graaf, Appl. Sci. Res. 4:381 (1954).

    Google Scholar 

  21. A. Michels, T. Wassenaar, and W. van Seventer, Appl. Sci. Res. 4:52 (1954).

    Google Scholar 

  22. F. M. Penning, Commun. Phys. Lab. Univ. Leiden, No. 166 (1923).

  23. I. A. Rogovaya and M. G. Kaganer, Russ. J. Phys. Chem. 34:917 (1960).

    Google Scholar 

  24. H. Romberg, Neue Messungen der Thermischen Zustandsgrossen der Luft bei tiefen Temperaturen und die Berechnung der Kalorischen Zustandsgrossen mit Hilfe des Kihara-Potentials, VDI-Forsch.-Heft 543 (VDI-Verlag, Düsseldorf, Germany, 1971).

    Google Scholar 

  25. A. A. Vasserman, E. A. Golovskii, E. P. Mitsevich, and V. A. Tsymarnyi, Measurement of the Density of Air at Temperatures of 78 to 190 K Up to a Pressure of 600 Bar, VINITI Deposition No. 2953 (Odessa Institute of Marine Engineering, Ukraine, 1976).

    Google Scholar 

  26. J. W. Magee, Int. J. Thermophys. 15:849 (1994).

    Google Scholar 

  27. O. C. Bridgeman, Phys. Rev. 34:527 (1929).

    Google Scholar 

  28. K. Nesselmann, Z. Tech. Phys. 6:151 (1925).

    Google Scholar 

  29. D. J. Poferl, R. A. Svehla, and K. Lewandowski, Thermodynamic and Transport Properties of Air and the Combustion Products of Natural Gas and of ASTM-A-1 Fuel with Air, NASA Tech. Note. D-5452 (1959), pp. 1-50.

  30. A. R. H. Goodwin, Thermophysical Properties from the Speed of Sound, Ph.D. thesis (University of London, London, 1988).

    Google Scholar 

  31. A. van Itterbeek and W. de Rop, Appl. Sci. Res. Sect. A 6:21 (1955).

    Google Scholar 

  32. B. A. Younglove and N. V. Frederick, Int. J. Thermophys. 13:1033 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasiti, M.D., Lemmon, E.W., Penoncello, S.G. et al. Thermodynamic Properties of Air from 60 to 2000 K at Pressures up to 2000 MPa. International Journal of Thermophysics 20, 217–228 (1999). https://doi.org/10.1023/A:1021450818807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021450818807

Navigation