Skip to main content
Log in

The Enzymes of Carbon Metabolism in the Thermotolerant Bacillar Strain K1

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

To determine enzymatic activities in the thermotolerant strain K1 (formerly “Sulfobacillus thermosulfidooxidans subsp. thermotolerans”), it was grown in a mineral medium with (1) thiosulfate and Fe2+ or pyrite (autotrophic conditions), (2) Fe2+, thiosulfate, and yeast extract or glucose (mixotrophic conditions), and (3) yeast extract (heterotrophic conditions). Cells grown mixo-, hetero-, and autotrophically were found to contain enzymes of the tricarboxylic acid (TCA) cycle, as well as malate synthase, an enzyme of the glyoxylate cycle. Cells grown organotrophically in a medium with yeast extract exhibited the activity of the key enzymes of the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. The increased content of carbon dioxide (up to 5 vol %) in the auto- and mixotrophic media enhanced the activity of the enzymes involved in the terminal reactions of the TCA cycle and the enzymes of the pentose phosphate pathway. Carbon dioxide is fixed in the Calvin cycle. The highest activity of ribulose bisphosphate carboxylase was detected in cells grown autotrophically at the atmospheric content of CO2 in the air used for aeration of the growth medium. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phospho-enolpyruvate carboxytransphosphorylase decreased with increasing content of CO2 in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kondrat'eva, T.F., Melamud, V.S., Tsaplina, I.A., Bogdanova, T.I., Senyushkin, A.A., Pivovarova, T.A., and Karavaiko, G.I. Peculiarities in the Chromosomal DNA Structure in Sulfobacillus thermosulfidooxidans Analyzed by Pulsed-Field Gel Electrophoresis, Mikrobiologiya, 1998, vol. 67, no. 1, pp. 19–25.

    Google Scholar 

  2. Karavaiko, G.I., Turova, T.P., Tsaplina, I.A., and Bogdanova, T.I., Investigation of the Phylogenetic Position of Aerobic, Moderately Thermophilic Bacteria Oxidizing Fe2+, S0, and Sulfide Minerals and Affiliated to the Genus Sulfobacillus, Mikrobiologiya, 2000, vol. 69, no. 6, pp. 857–860.

    Google Scholar 

  3. Karavaiko, G.I., Krasil'nikova, E.N., Tsaplina, I.A., Bogdanova, T.I., and Zakharchuk, L.M., Growth and Carbohydrate Metabolism of Sulfobacilli, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 293–290.

    Google Scholar 

  4. Kovalenko, E.V. and Malakhova, P.T., The Spore-forming Iron-oxidizing Bacterium Sulfobacillus thermosulfidooxidans, Mikrobiologiya, 1983, vol. 52, no. 6, pp. 962–966.

    Google Scholar 

  5. Tsaplina, I.A., Bogdanova, T.I., Sayakin, D.D., and Karavaiko, G.I., The Effect of Organic Substances on the Growth of Sulfobacillus thermosulfidooxidans 1269 and the Oxidation of Pyrite, Mikrobiologiya, 1991, vol. 60, no. 6, pp. 34–40.

    Google Scholar 

  6. Norris, P.R., Clark, D.A., Owen, J.P., and Waterhouse, S., Characteristics of Sulfobacillus acidophilus sp. nov. and Other Moderately Thermophilic Mineral Sulphide-oxidizing Bacteria, Microbiology (UK), 1996, vol. 142, pp. 775–783.

    Google Scholar 

  7. Dufresne, S., Bousquet, J., Boissinot, M., and Guay, R., Sulfobacillus thermosulfidooxidans sp. nov., a New Acidophilic, Disulfide-oxidizing, Gram-Positive, Sporeforming Bacterium, Int. J. Syst. Bacteriol., 1996, vol. 46, no. 4, pp. 1056–1054.

    Google Scholar 

  8. Zakharchuk, L.M., Tsaplina, I.A., Krasil'nikova, E.N., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism in Sulfobacillus thermosulfidooxidans, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 573–580.

    Google Scholar 

  9. Tsaplina, I.A., Krasil'nikova, E.N., Zakharchuk, L.M., Egorova, M.A., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, Strain 41, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 334–340.

    Google Scholar 

  10. Manning, H.L., New Medium for Isolating Iron-oxidizing and Heterotrophic Acidophilic Bacteria from Acid Mine Drainage, Appl. Microbiol., 1975, vol. 30, pp. 1010–1015.

    Google Scholar 

  11. Ivanovsky, R.N., Fal, Y.I., Berg, I.A., Ugolkova, N.V., Krasil'nikova, E.N., Keppen, O.I., Zakcharchuk, L.M., and Zyakun, A.M., Evidence for the Presence of the Reductive Pentose Phosphate Cycle in a Filamentous Anoxygenic Photosynthetic Bacterium Oscillochloris trichoides Strain DG-6, Microbiology (UK), 1999, vol. 145, pp. 1743–1748.

    Google Scholar 

  12. Lowry, O.H., Rosebrough, M.S., Farr, A.L., and Randall, R.S., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    Google Scholar 

  13. Smith, A.L., Kelly, D.P., and Wood, A.P., Metabolism of Thiobacillus A2 Grown under Autotrophic, Mixotrophic, and Heterotrophic Conditions in Chemostat Culture, J. Gen. Microbiol., 1980, vol. 121, pp. 127–138.

    Google Scholar 

  14. Katayama, Y., Hiraishi, A., and Kuraishi, H., Paracoccus thiocyanatus sp. nov., a New Species of Thiocyanate-utilizing Facultative Chemolithotroph, and Transfer of Thiobacillus versutus to the Genus Paracoccus as Paracoccus versutus comb. nov. with Emendation of the Genus, Microbiology (UK), 1995, vol. 141, pp. 1469–1477.

    Google Scholar 

  15. Wood, A.P. and Kelly, D.P., Growth and Sugar Metabolism of a Thermoacidophilic Iron-oxidizing Mixotrophic Bacterium, J. Gen. Microbiol., 1984, vol. 130, pp. 1337–1349.

    Google Scholar 

  16. Krasil'nikova, E.N., Tsaplina, I.A., Zakharchuk, L.M., Bogdanova, T.I., and Karavaiko, G.I., Metabolism of Reduced Sulfur Compounds in Sulfobacillus thermosulfidooxidans, Strain 1269, Mikrobiologiya, 1998, vol. 67, no. 2, pp. 173–189.

    Google Scholar 

  17. Wood, A.P. and Kelly, D.P., Autotrophic and Mixotrophic Growth of Three Thermoacidophilic Iron-oxidizing Bacteria, FEMS Microbiol. Lett., 1983, vol. 20, pp. 107–112.

    Google Scholar 

  18. Vartanyan, N.S., Karavaiko, G.I., and Pivovarova, T.A., The Effect of Organic Compounds on the Growth of Sulfobacillus thermosulfidooxidans subsp. asporogenes and the Oxidation of Inorganic Substrates, Mikrobiologiya, 1990, vol. 59, no. 3, pp. 411–417.

    Google Scholar 

  19. Tabita, F.R., Molecular and Cellular Regulation of Autotrophic Carbon Dioxide Fixation in Microorganisms, Microbiol. Rev., 1988, vol. 52, pp. 155–189.

    Google Scholar 

  20. Bogdanova, T.I., Tsaplina, I.A., Sayakin, D.D., Karavaiko, G.I., and Kovalenko, E.V., The Morphology and Cytology of Sulfobacillus thermosulfidooxidans subsp. thermotolerans, Mikrobiologiya, 1990, vol. 59, no. 5, pp. 844–855.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavaiko, G.I., Zakharchuk, L.M., Bogdanova, T.I. et al. The Enzymes of Carbon Metabolism in the Thermotolerant Bacillar Strain K1. Microbiology 71, 651–656 (2002). https://doi.org/10.1023/A:1021419604344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021419604344

Navigation