Skip to main content
Log in

Transport Properties of Ca1 – x MnO3 – δ + xCeO2(0 < x ≤ 0.15) Mixtures

  • Published:
Inorganic Materials Aims and scope

Abstract

Data are presented on the temperature-dependent electrical conductivity and thermoelectric power of Ca1 – x MnO3 – δ + xCeO2 (0 < x ≤ 0.15) mixtures obtained as intermediate products in the synthesis of Ca1 – x Ce x MnO3 – δ solid solutions. The electrical properties of the mixtures are shown to be dominated by those of the perovskite-like phase Ca1 – x MnO3 – δ and to depend on Ca concentration. All of the samples with 0 ≤ x ≤ 0.15 exhibit n-type conductivity. The charge transport in CaMnO3 – δ below 930 K is attributable to small-polaron hopping. At higher temperatures, conduction through delocalized states seems to prevail. In the Ca1 – x MnO3 – δ + xCeO2 mixtures with 0.05 ≤ x ≤ 0.15, small-polaron hopping is observed between 160 and 920 K. Below 160 K, the temperature variation of conductivity in the samples with x = 0.1 and 0.15 follows Mott's law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pal'guev, S.F., Gil'derman, V.K., and Zemtsov, V.I., Vysokotemperaturnye elektronnye provodniki dlya elektrokhimicheskikh ustroistv (High-Temperature Electronic Conductors for Electrochemical Applications), Moscow: Nauka, 1990.

    Google Scholar 

  2. Iwahara, H., Esaka, T., Morimoto, H., and Hamajima, H., Ca1 -x CexMnO3 ±δas New Air Electrode Material for SOFC, Denki Kagaku oyobi Koguo Butsuri Kagaku, 1989, vol. 57, no. 6, pp. 591–594

    Google Scholar 

  3. Esaka, T., Morimoto, H., and Iwahara, H., Nonstoichiometry in Perovskite-Type Oxide Ca1-x CexMnO3-δand Its Properties in Alkaline Solution, J. Appl. Electrochem., 1992, vol. 22, no. 9, pp. 821–824

    Google Scholar 

  4. Ohtaki, M., Koga, H., Tokunaga, T., et al., Electrical Transport Properties and High-Temperature Thermoelectric Performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi), J. Solid State Chem., 1995, vol. 120, pp. 105–111.

    Google Scholar 

  5. Baumgartner, C.E., Arendt, R.H., Iacovangelo, C.D., and Karas, B.R., Molten Carbonate Fuel Cell Cathode Materials Study, J. Electrochem. Soc., 1984, vol. 131, no. 10, pp. 2217–2221.

    Google Scholar 

  6. Kurumchin, E.Kh., Oxygen Isotope Exchange Study of the Interface between Oxygen and ZrO2-, Bi2O3-, or CeO2-Based Electrolyte, in Elektrodnye reaktsii v tverdykh elektrolitakh (Electrode Reactions in Solid Electrolytes), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1990, pp. 63–79.

    Google Scholar 

  7. Kharitonov, E.V., Dielektricheskie materialy s neodnorodnoi strukturoi (Dielectric Materials with Inhomogeneous Structure), Moscow: Radio i Svyaz', 1983.

    Google Scholar 

  8. Anatychuk, L.I., Termoelementy i termoelektricheskie ustroistva: Spravochnik (Thermoelements and Thermoelectric Devices: A Handbook), Kiev: Naukova Dumka, 1979.

    Google Scholar 

  9. Poepelmeier, K.R., Leonowicz, M.E., and Longo, J.M., CaMnO2.5 and Ca2MnO3.5: New Oxygen-Defect Perovskite-Type Oxides, J. Solid State Chem., 1982, vol. 44, pp. 89–98.

    Google Scholar 

  10. West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1984. Translated under the title Khimiya tverdogo tela. Teoriya i prilozheniya, Moscow: Mir, 1988, vol. 1.

    Google Scholar 

  11. Miller, R.C., Heikes, R.R., and Mazelsky, R., Model for the Electronic Transport Properties of Mixed Valence Semiconductors, J. Appl. Phys., 1961, vol. 32, no. 10, pp. 2202–2206.

    Google Scholar 

  12. Pavlotskii, Ya.V., Loginova, M.V., Polyanskii, A.V., and Shteftel', I.T., Microstructure, Electrical Conductivity, and Thermoelectric Power of Polycrystalline CaMnO3, Izv. Akad. Nauk SSSR, Neorg. Mater., 1977, vol. 13, no. 3, pp. 485–489.

    Google Scholar 

  13. Appel', D., Polarons, Polyarony (Polarons), Firsov, Yu.A., Ed., Moscow: Nauka, 1975, pp. 13–204.

    Google Scholar 

  14. Mott, N. and Davis, E., Electronic Processes in Non-Crystalline Materials, Oxford: Oxford Univ. Press, 1979. Translated under the title Elektronnye protsessy v nekristallicheskikh veshchestvakh, Moscow: Nauka, 1975, vol. 1.

    Google Scholar 

  15. Ambegaokar, V., Halperin, B., and Langer, J., Hopping Conductivity in Disordered Systems, Phys. Rev. B: Solid State, 1971, vol. 4, no. 8, pp. 2612–2620.

    Google Scholar 

  16. Abbate, M., de Groot, F.M.F., Fuggle, J.C., et al., Controlled-Valence Properties of La1-x SrxFeO3 and La1 -x SrxMnO3 Studied by Soft-X-ray Absorption Spectroscopy, Phys. Rev. B: Condens. Matter, 1992, vol. 46, no. 8, pp. 4511–4519.

    Google Scholar 

  17. Goodenough, J.B., Covalency Criterion for Localized Collective Electrons in Oxides with the Perovskite Structure, J. Appl. Phys., 1966, vol. 37, no. 3, pp. 1415–1422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecherskii, S.I., Konopel'ko, M.A., Esina, N.O. et al. Transport Properties of Ca1 – x MnO3 – δ + xCeO2(0 < x ≤ 0.15) Mixtures. Inorganic Materials 38, 1270–1276 (2002). https://doi.org/10.1023/A:1021379606219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021379606219

Keywords

Navigation