Skip to main content
Log in

Electrical conductivity and thermoelectric power of La1–x Li x CoO3–δ (0 ≤ x ≤ 0.1) oxides

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of the concentration of lithium ions on the phase composition, the electrical conductivity, and the thermoelectric power of La1–x Li x CoO3–δ (0 ≤ x ≤ 0.1) oxides synthesized by the ceramic method has been investigated. It has been found that the region of the existence of perovskite-type La1–x Li x CoO3–δ solid solutions does not exceed x = 0.05. The doping with lithium leads to an increase in the electrical conductivity of single-phase samples in comparison with that of the LaCoO3 compound. As the temperature increases from 300 to 400 K, the thermoelectric power of the LaCoO3 compound increases from the negative to positive values and then decreases, but remains positive in the temperature range from 400 to 1020 K. The thermoelectric power of the other samples has a positive sign. The results obtained have been discussed based on the models of the electron density of states in LaCoO3 and La1–x Sr x CoO3–δ, proposed in the studies of Señarís-Rodríguez and Goodenough, as well as in the framework of the theory of non-crystalline materials, developed by Mott.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Señarís-Rodríguez and J. B. Goodenough, J. Solid State Chem. 118 (2), 323 (1995).

    Article  ADS  Google Scholar 

  2. R. Caciuffo, D. Rinaldi, G. Barucca, J. Mira, J. Rivas, M. A. Señarís-Rodríguez, P. G. Radaelli, D. Fiorani, and J. B. Goodenough, Phys. Rev. B: Condens. Matter 59 (2), 1068 (1999).

    Article  ADS  Google Scholar 

  3. A. N. Petrov, O. F. Kononchuk, A. V. Andreev, V. A. Cherepanov, and P. Kofstad, Solid State Ionics 80, 189 (1995).

    Article  Google Scholar 

  4. V. Golovanov, L. Mihaly, and A. R. Moodenbaugh, Phys. Rev. B: Condens. Matter 53 (13), 8207 (1996).

    Article  ADS  Google Scholar 

  5. N. O. Golosova, D. P. Kozlenko, V. I. Voronin, V. P. Glazkov, and B. N. Savenko, Phys. Solid State 48 (1), 96 (2006).

    Article  ADS  Google Scholar 

  6. T. Ohtani, K. Kuroda, K. Matsugami, and D. Katoh, J. Eur. Ceram. Soc. 20, 2721 (2000).

    Article  Google Scholar 

  7. S. R. Sehlin, H. U. Anderson, and D. M. Sparlin, Phys. Rev. B: Condens. Matter 52 (16), 11681 (1995).

    Article  ADS  Google Scholar 

  8. S. F. Pal’guev, V. K. Gil’derman, and V. I. Zemtsov, High-Temperature Oxide Electronic Conductors for Electrochemical Devices (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  9. P. M. Raccah and J. B. Goodenough, Phys. Rev. 155 (3), 932 (1967).

    Article  ADS  Google Scholar 

  10. M. A. Señarís-Rodríguez and J. B. Goodenough, J. Solid State Chem. 116 (2), 224 (1995).

    Article  ADS  Google Scholar 

  11. N. N. Lubinskii, L. A. Bashkirov, G. S. Petrov, S. V. Shevchenko, I. N. Kandidatova, and I. M. Sirota, Inorg. Mater. 45 (9), 1026 (2009).

    Article  Google Scholar 

  12. V. Zlatic, G. R. Boyd, and J. K. Freericks, Phys. Rev. B: Condens. Matter 89 (15), 155101 (2014).

    Article  ADS  Google Scholar 

  13. Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura, and H. Takagi, Phys. Rev. B: Condens. Matter 58 (4), 1699 (1998).

    Article  ADS  Google Scholar 

  14. M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97 (17), 176405 (2006).

    Article  ADS  Google Scholar 

  15. N. N. Oleynikov and V. A. Ketsko, Russ. J. Inorg. Chem. 49 (Suppl. 1), 1 (2004).

    Google Scholar 

  16. K. Huang, H. Y. Lee, and J. B. Goodenough, J. Electrochem. Soc. 145, 3221 (1998).

    Google Scholar 

  17. C. E. Baumgartner, R. H. Arendt, C. D. Iacovangelo, and B. R. Karas, J. Electrochem. Soc. 131, 2217 (1984).

    Article  Google Scholar 

  18. H. Wang, Z. Zhao, P. Liang, C. Xu, A. Duan, G. Jiang, G. Xu, and J. Liu, Catal. Lett. 124, 91 (2008).

    Article  Google Scholar 

  19. S. I. Vecherskii, S. N. Tabatchikova, B. D. Antonov, and V. A. Biryukov, Inorg. Mater. 47 (12), 1356 (2011).

    Article  Google Scholar 

  20. S. I. Vecherskii, N. N. Batalov, N. O. Esina, and G. Sh. Shekhtman, Phys. Solid State 46 (8), 1474 (2004).

  21. L. I. Anatychuk, Thermoelements and Thermoelectric Devices: A Handbook (Naukova Dumka, Kiev, 1979) [in Russian].

    Google Scholar 

  22. E. Antolini, J. Eur. Ceram. Soc. 18, 1405 (1998).

    Article  Google Scholar 

  23. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979; Mir, Moscow, 1982), Vol. 1.

    Google Scholar 

  24. E. V. Kharitonov, Dielectric Materials with Inhomogeneous Structure (Radio i Svyaz’, Moscow, 1983) [in Russian].

    Google Scholar 

  25. R. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978; Mir, Moscow, 1982).

    MATH  Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vecherskii.

Additional information

Original Russian Text © S.I. Vecherskii, M.A. Konopel’ko, N.N. Batalov, B.D. Antonov, O.G. Reznitskikh, T.V. Yaroslavtseva, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2299–2306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecherskii, S.I., Konopel’ko, M.A., Batalov, N.N. et al. Electrical conductivity and thermoelectric power of La1–x Li x CoO3–δ (0 ≤ x ≤ 0.1) oxides. Phys. Solid State 58, 2385–2393 (2016). https://doi.org/10.1134/S1063783416120337

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120337

Navigation