Skip to main content
Log in

Agroforestry tree selection in central Chile: biological nitrogen fixation and early plant growth in six dryland species

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Growth rate, resource partitioning, and several biological traits related to biological N2 fixation for six native or non-native tree species were compared using 15N isotope dilution techniques. The trees were field grown for six years in a semiarid mediterranean-climate region with five to six months a year of absolute drought. Trees were tested as candidates for new agroforestry systems being developed in central Chile to improve soil fertility and land ‘health’, while also increasing productivity and profitability for landowners and animal breeders. Four nitrogen-fixing legume trees (NFTs) were tested: Acacia caven (Mol.) Mol.Prosopis alba Griseb., P. chilensis (Mol.) Steuntz. emend. Burk., and Tagasaste ( Chamaecytisus proliferus L.f. subsp. palmensis (Christ.)Kunkel). Additional, non-nitrogen-fixing trees were the slow-growing native Huingán (Schinus polygamus (Cav.) Caberera and the fast-growing European Ash (Fraxinus excelsior L.). Among the NFTs, highly contrasting patterns in biological nitrogen fixation (BNF) were detected, for Ndfa (proportion of N derived from atmosphere), nodule efficiency (NE = gN fixed g−1 nodules), and N content in leaves, stems and roots. Tagasaste produced 2.5–25 times more biomass and fixed 4.5 to 30 times more atmospheric nitrogen than the South American Acacia and Prosopis species. Ndfa reached 250 g plant−1 in Tagastaste, in the sixth year, with NE = maximum 2.68 in the 4th year, and 1.12 in the 6th year. In contrast, Acacia caven had by far the highest NE of the four NFTs – 12.13 in the 4th year and 6.6 in the 6th year. Whereas BNF in Tagasaste peaked in the fourth year, and declined thereafter, BNF in Acacia caven increased steadily over six years. Fraxinus excelsiorand Schinus polygamus had growth rates and biomass accumulation intermediate between that of Tagasaste and the South American NFTs.Results are discussed in relation to agroforestry, restoration of soil fertility, and ecological and economic rehabilitation of damaged ecosystems and landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson J. 1992. Evolutionary Biology of Acacia caven (Leguminosae, Mimosoideae). Intraspecific variation in fruits and seeds. Ann Missouri Bot Gard 79: 558-569.

    Google Scholar 

  • Aronson J., Ovalle C. and Avendaño J. 1992. Early growth rate and nitrogen fixation potential in 44 legume species grown in two soil types in central Chile. For Ecol Managem 47: 225-244.

    Google Scholar 

  • Aronson J., Floret C., Le Floc'h E., Ovalle C. and Pontanier R. 1993a. Restoration and rehabilitation of degraded ecosystems. I. A view from the South. Rest Ecol 1: 8-17.

    Google Scholar 

  • Aronson J., Floret C., Le Floc'h E., Ovalle C. and Pontanier R. 1993b. Restoration and rehabilitation of degraded ecosystems. II. Case studies in Chile, Tunisia and Cameroon. Rest Ecol 1: 168-187.

    Google Scholar 

  • Aronson J., Del Pozo A., Ovalle C., Avendaño J., Lavin A. and Etienne M. 1998. Land use changes and conflicts in central Chile. In: Rundel P.W, Montenegro G. and Jaksic F. (eds), Landscape Degradation and Biodiversity in Mediterranean-type Ecosystems. Springer, Berlin, pp. 155-168, Ecological Studies Series 136.

    Google Scholar 

  • Aronson J., Le Floc'h E. and Ovalle C. 2002. Semi-arid woodlands and desert fringes. In: Perrow M. and Davy A. (eds), Handbook of Ecological Restoration. Vol. 2. Cambridge University Press, pp. 466-485.

  • Arredondo S., Aronson J., Ovalle C., Del Pozo A. and Avendaño A. 1998. Screening multipurpose legume trees in central Chile. Sixth year results. For Ecol Managem 109: 221-230.

    Google Scholar 

  • Bernhard-Reversat F. and Poupon H. 1980. Nitrogen cycling in a soil-tree system in a Sahelian Savanna. In: Rosswall T. (ed.), Example of Acacia senegal, Nitrogen Cycling in West African Ecosystems. Kluwer, Amsterdam, pp. 363-369.

    Google Scholar 

  • Danso S.K.A., Bowen G.D. and Sanginga N. 1992. Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141: 177-196.

    Google Scholar 

  • Del Pozo A., Aronson J., Ovalle C. and Avendaño J. 2000a. Developmental responses to temperature and photoperiod in ecotypes of Medicago polymorpha L. collected along an environmental gradient in central Chile. Ann Bot 85: 809-814.

    Google Scholar 

  • Del Pozo A., Garnier E. and Aronson J. 2000b. Contrasted nitrogen utilization in annual C3 grasses and legume crops: physiological explorations and ecological consequences. Acta Oecol 29: 79-89.

    Google Scholar 

  • Döbereiner J., Franco A.A. and Guzman I. 1970. Estirpes de Rhizobium japonicum de excepcional eficiencia. Pesq Agropec Bras 5: 155-161.

    Google Scholar 

  • Fagg C.W. and Stewart J.L. 1994. The value of Acacia and Prosopis in arid and semi-arid environments. J Arid Environ 27: 3-25.

    Google Scholar 

  • Fried M. and Middleboe V. 1977. Measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil 47: 713-715.

    Google Scholar 

  • Frioni L., Dodera R., Malates D. and Irigoyen I. 1998a. An assessment of nitrogen fixation capability of leguminous trees in Uruguay. Appl Soil Ecol 7: 271-279.

    Google Scholar 

  • Frioni L., Malates D., Irigoyen I. and Dodera R. 1998b. Promiscuity for nodulation and effectivity in the N2-fixing legume tree Acacia caven in Uruguay. Appl Soil Ecol 7: 239-244.

    Google Scholar 

  • Izaguirre-Mayoral M.L., Carballo O., Flores S., de Mallorca M.S. and Oropeza T. 1992. Quantitative analysis of the symbiotic N2-fixation, non-structural carbohydrates and chlorophyll content in sixteen native legume species collected in different savanna sites. Symbiosis 12: 293-312.

    Google Scholar 

  • Jenkins M.B., Virginia R.A. and Jarrell W.M. 1987. Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran Desert. App Env Microb 53: 36-40.

    Google Scholar 

  • Joffre R., Vacher J., de los Llanos C. and Long G. 1988. The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6: 71-96.

    Google Scholar 

  • Joffre R., Rambal S. and Ratte J.P. 1999. The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45: 57-79.

    Google Scholar 

  • Lefroy E.C., Hobbs R.J., O'Connor M.H. and Pate J.S. (eds) 2000. Agriculture as a Mimic of Natural Ecosystems. Kluwer, Amsterdam.

    Google Scholar 

  • Ndoye I., Gueye I., Danso S.K.A. and Dreyfus B. 1995. Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil 171: 175-180.

    Google Scholar 

  • Ovalle C, Aronson J., Del Pozo A. and Avendaño J. 1990. The Espinal: agroforestry systems of the mediterranean-type climate region of Chile: State of the art and prospects for improvement. Agrofor Syst 10: 213-239.

    Google Scholar 

  • Ovalle C., Avendaño J., Del Pozo A. and Aronson J. 1996a. A study of the anthropogenic savannas in the subhumid region of central Chile. Land occupation patterns and vegetation structure. For Ecol Managem 86: 129-139.

    Google Scholar 

  • Ovalle C., Longeri L., Aronson J., Herrera A. and Avendaño J. 1996b. N2-fixation, nodule efficiency and biomass accumulation after two years in three Chilean legume trees and Tagasaste (Chamaecytisus proliferus subsp. palmensis). Plant Soil 179: 131-140.

    Google Scholar 

  • Parrotta J.A. and Fried M. 1994. Application of 15N enrichment methodologies to estimate nitrogen fixation in Casuarina equisetifolia. Can J For Res 24: 201-207.

    Google Scholar 

  • Sharifi M.R., Nilsen E.T. and Rundel P.W. 1982. Biomass and net primary productivity of Prosopis glandulosa (Fabaceae) in the Sonoran Desert of California. Am J Bot 69: 760-767.

    Google Scholar 

  • Shearer G., Kohl D.H., Virginia R.A., Bryan B.A., Skeeters J.L., Nilsen E.T. et al. 1983. Estimates of N2-fixation from the natural abundance of 15N in Sonoran Desert ecosystems. Oecologia 56: 365-373.

    Google Scholar 

  • Snook L.C. 1989. Tagasaste (Tree Lucerne). Chamaecytisus palmensis. A browze shrub which will increase production from grazing animals. Anim Prod Aust 15: 589-592.

    Google Scholar 

  • Unkovich M.J., Pate J.S., Lefroy E.C. and Arthur D.J. 2000. Nitrogen isotope fractionation in a fodder tree legume tagasaste (Chamaecytisus proliferus) and assessment of N2 fixation inputs in deep sandy soils of Western Australia. Aust J Plant Physiol 27: 921-929.

    Google Scholar 

  • Virginia R.A. and Jarrell W. 1983. Soil properties in a mesquite-dominated Sonoran Desert ecosystem. Soil Science Society America 47: 138-144.

    Google Scholar 

  • Virginia R.A. 1986. Soil development under legume tree canopies. For Ecol Managem 16: 69-79.

    Google Scholar 

  • Virginia R.A., Baird L.M., La Favre J.S., Jarrell W.M., Byran B.A. and Shearer G. 1984. Nitrogen fixation efficiency, natural 15N abundance, and morphology of mesquite (Prosopis glandulosa) root nodules. Plant Soil 79: 273-284.

    Google Scholar 

  • Whisenant S. 1999. Repairing Damaged Wildlands. A Process-oriented, Landscape002Dscale Approach. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Aronson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronson, J., Ovalle, C., Avendaño, J. et al. Agroforestry tree selection in central Chile: biological nitrogen fixation and early plant growth in six dryland species. Agroforestry Systems 56, 155–166 (2002). https://doi.org/10.1023/A:1021345318008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021345318008

Navigation