Skip to main content
Log in

Risk analysis for biological weed control – simulating dispersal of Sclerotinia sclerotiorum (Lib.) de Bary ascospores from a pasture after biological control of Cirsium arvense (L.) Scop.

  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Biological control of Cirsium arvense(L.) Scop. in pasture by the plurivorous plantpathogenic fungus Sclerotiniasclerotiorum (Lib.) de Bary mayresult in the formation, escape and aerialdispersal of ascospores, creating an additionaldisease risk in down-wind market garden crops. To determine the width of a safety zone for apasture subjected to this form of weed control,we simulated the spatial pattern in the ratioof added (due to biocontrol) to naturallyoccurring airborne ascospores (due to marketgarden crops) around a 1ha virtual biocontrolpasture under either sheep or dairy cattlegazing over a 91-day emission period in 1996 inCanterbury, New Zealand. This was achievedusing a unique combination of two computermodels; SPORESIM-1D (for spore escape from avegetation source) and PC-STACKS (a modernGaussian plume model for dispersal beyond asource). Plumes of dispersing ascospores weremodelled for each hour of the emission periodfor both the virtual market garden andbiocontrol sites, and the aerial density of theascospores was averaged over the period. Assuming that a 1:1 ratio of added to naturallypresent spores is acceptable, no safety zonewas necessary for either of the modeledpastures. A ten-fold ratio (1:10 added tonatural) necessitated safety zones of 300 and150 m for the sheep and dairy pasturerespectively. Uncertainties associated withextrapolation of this conclusion to individualpasture management scenarios, and to otheryears and climatically different regions arediscussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abawi G.S. and Grogan R.G.: 1979, Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69, 899-903.

    Google Scholar 

  • Adams P.B. and Ayers W.A.: 1979, Ecology of Sclerotinia species. Phytopathology 69, 896-898.

    Google Scholar 

  • Bourdôt G.W. and Harvey I.C.: 1996, The potential of the fungus Sclerotinia sclerotiorum as a biological herbicide for controlling thistles in pasture. Plant Protection Quarterly 11, 259-262.

    Google Scholar 

  • Bourdôt G.W., Harvey I.C., Hurrell G.A. and Saville D.J.: 1995, Demographic and biomass production consequences of inundative treatment of Cirsium arvense with Sclerotinia sclerotiorum. Biocontrol Science and Technology 5, 11-25.

    Google Scholar 

  • Bourdôt G.W., Hurrell G.A., Saville D.J. and de Jong M.D.: 2001, Risk analysis of Sclerotinia sclerotiorum for biological control of Cirsium arvense in pasture: Ascospore dispersal. Biocontrol Science and Technology 11, 119-139.

    Google Scholar 

  • Bourdôt G.W., Saville D.J., Hurrell G.A., Harvey I.C. and de Jong M.D.: 2000, Risk analysis of Sclerotinia sclerotiorum for biological control of Cirsium arvense in pasture: sclerotium survival. Biocontrol Science and Technology 10, 411-425.

    Google Scholar 

  • Briggs G.: 1973, Diffusion Estimates for Small Emissions, in Environmental Research Laboratories, Air Resources Atmosphere Turbulence and Diffusion Laboratory. Annual report of the USAEC., ATDL-106, National Oceanic and Atmospheric Administration.

  • Cook G.E., Steadman J.R. and Boosalis M.G.: 1975, Survival of whetzelinia sclerotiorum and initial infection of dry edible beans in Western Nebraska. Phytopathology 65, 250-255.

    Google Scholar 

  • Cornwallis L.J., Stewart A., Bourdôt G.W., Gaunt R.E., Harvey I.C. and Saville D.J.: 1999, Pathogenicity of Sclerotinia sclerotiorum on Ranunculus acris in dairy pasture. Biocontrol Science and Technology 9, 365-377.

    Google Scholar 

  • de Jong M.D.: 1988, Risk to Fruit Trees Due to Control of Black Cherry (Prunus serotina) by Silver Leaf Fungus (Chondrostereum purpureum). PhD thesis, Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • de Jong M.D.: 1992, Risk assessment for the application of biological control of a forest weed by a common plant pathogenic fungus. Risk Analysis 12, 465-466.

    Google Scholar 

  • de Jong M.D., Aylor D.E. and Bourdôt G.W.: 1999, A methodology for risk analysis of plurivorous fungi in biological weed control: Sclerotinia sclerotiorum as a model. BioControl 43, 397-419.

    Google Scholar 

  • de Jong M.D., Bourdôt G.W., Powell J. and Goudriaan J.: 2002, A model of the escape of Sclerotinia sclerotiorum ascospores from pasture. Ecological Modelling 150, 83-150.

    Google Scholar 

  • de Jong M.D. and Scheepens P.C.: 1985, Analyse van risico bij bestrijding van Amerikaanse vogelkers (Prunus serotina) met loodglansschimmel (Chondrostereum purpureum) voor planten waartegen de bestrijding niet is gericht, Vol. 58. Centrum voor Agrobiologisch Onderzoek, Wageningen, pp. 35.

    Google Scholar 

  • de Jong M.D., Scheepens P.C. and Zadoks J.C.: 1990a, Risk analysis applied to biological control of a forest weed, using the Gaussian plume model. Grana 29, 139-145.

    Google Scholar 

  • de Jong M.D., Zadoks J.C.: 1990b, Risk analysis for biological control: A Dutch case study in biocontrol of Prunus serotina by the fungus Chondrostereum purpureum. Plant Disease, 189-194.

  • Di-Giovanni F. and Beckett P.M.: 1990, On mathematical modelling of pollen dispersal and deposition. Journal of Applied Meteorology 29, 1352-1357.

    Google Scholar 

  • Di-Giovanni F. and Kevan P.G.: 1991, Factors affecting pollen dynamics and its importance to pollen contamination: A review. Canadian Journal of Forest Research 21, 1155-1170.

    Google Scholar 

  • Dorrestein F.: 1981, Frequentiemodellen voor luchtverontreiniging. Verslag V-94. Luchthygiene en-verontreiniging. Wageningen Agricultural University, Wageningen.

    Google Scholar 

  • Erbrink J.J.: 1989, Simple Determination of the Atmospheric Stability Class for Application in Dispersion Modelling, Using Wind Fluctuations, Vol. 7. KEMA, Arnhem, pp. 391-399.

    Google Scholar 

  • Erbrink J.J.: 1991a, A practical model for the calculation of σ y and σ z for use in an on-line Gaussian dispersion model for tall stacks, based on wind fluctuations. Atmospheric Environment 25A, 277-283.

    Google Scholar 

  • Erbrink J.J.: 1991b, Veldmetingen aan de rookpluim van Amer-81 met Lidar en glasplaten: NOVEM proef nummer 13, KEMA report 81114-MOF 91-3518. KEMA, Arnhem, pp. 3518.

    Google Scholar 

  • Erbrink J.J.: 1994a, The advanced Gaussian model STACKS. Proceedings of the ERCOFTAC Workshop on ‘Intercomparison of Advanced Pratical Short-Range Atmospheric Dispersion Models’. Manno, Switzerland, 29 August-3 September 1993.

  • Erbrink J.J.: 1994b, Plume rise in different atmospheres-a practical scheme and some comparisons with lidar measurements. Atmospheric Environment 28, 3625-3636.

    Google Scholar 

  • Erbrink J.J.: 1994c, Use of advanced meteorology in the Gaussian model “STACKS”. Boundary Layer Meteorology 74, 211-235.

    Google Scholar 

  • Erbrink J.J.: 1995a, Turbulent Diffusion from Tall Stacks-the Use of Advanced Boundary-Layer Meteorological Patterns in the Gaussian Dispersion Model "STACKS". PhD thesis, Free University, Amsterdam.

    Google Scholar 

  • Erbrink J.J.: 1995b, Use of boundary-layer metereorological parameters in the Gaussian model 'sTACKS'. Boundary-Layer Meteorology 9431, 1-25.

    Google Scholar 

  • Erbrink J.J. and Bange P.: 1991, Modelling dispersion and NO oxidation in power plant plumes. Proceedings of the 19th International Technical Meeting of NATO-CCMS on Air Pollution Modelling and its Application. Ierapetra Greece, Plenum Press.

    Google Scholar 

  • Erbrink J.J., Tieben H. and Cosemans G.: 1994, Application of different dispersion models to a site near the Belgium-Dutch border. Proceedings of the Third Workshop on Harmonisation Within Atmospheric Dispersal Modelling for Regulatory Purposes. Mol Belgie, pp. 21-24, November.

  • Goudriaan J.: 1989, Simulation of micrometeorology of crops, some methods and their problems, and a few results. Agricultural and Forest Meteorology 47, 239-258.

    Google Scholar 

  • Harvey I.C. and Bourdôt G.W.: 2001, Giant buttercup (Ranunculus acris L.) control in dairy pasture using a mycoherbicide based on Sclerotinia sclerotiorum. New Zealand Plant Protection 54, 120-124.

    Google Scholar 

  • Huang H.C. and Kozub G.C.: 1993, Survival of mycelia of Sclerotinia sclerotiorum in infected stems of Dry Bean, Sunflower, and Canola. Phytopathology 83, 937-939.

    Google Scholar 

  • Irwin J.: 1983, Estimating plume dispersion-a comparison of several sigma schemes. Journal of Applied Meteorology 22, 92-114.

    Google Scholar 

  • KEMA: 1994, Onzerkerheidsanalyse van het STACKS model, KEMA-report 63926-PCL 94. KEMA, Arnhem, pp. 2295.

    Google Scholar 

  • McCartney H.A. and Fitt B.D.L.: 1985, Construction of dispersal models. In: C.A. Gilligan (ed), Advances in Plant Pathology, Vol. 3. Harcourt Brace Jovanovich, pp. 107-143.

  • Pasquill F.: 1961, The estimation of the dispersal of windborne material. Meteorological Magazine 90, 33-49.

    Google Scholar 

  • Pasquill F.: 1976, Atmospheric Dispersion Parameters in Gaussian Plume Modelling, Part II. Possible requirements for change in the Turner Workbook values, EPA-600/4-76-030b, EPA, USA.

    Google Scholar 

  • Pennycook S.R.: 1989, Plant Diseases Recorded in New Zealand. DISR, Auckland.

    Google Scholar 

  • Scheepens P. and Lotz L.: 1994, Perspectief voor biologische onkruidbestrijding, Nota 1, AB-DLO. Wageningen, The Netherlands, pp. 34.

    Google Scholar 

  • Schwartz H.F. and Steadman J.R.: 1978, Factors affecting sclerotium populations of, and apothecium production by, Sclerotinia sclerotiorum. Phytopathology 68, 383-388.

    Google Scholar 

  • Spijkerboer H.P., Beniers J.E., Jaspers D., Schouten H.J., Goudriaan J., Rabbinge R. and Van der Werf W.: 2002, Ability of the Gaussian plume model to predict and describe spore dispersal over a potato crop. Ecological Modelling 155, 1-18.

    Google Scholar 

  • Taylor G.: 1921, Diffusion by continuous movements. Proceedings of the London Mathematics Society, Vol. 20. London Mathematics Society, pp. 196-202.

    Google Scholar 

  • van Ham J., van den Bosch K., Erbrink H., van Hoof H., van Jaarsveld H., Pulles T. and Verver G.: 1998, Het nieuwe nationaal model. Lucht 1, 25-29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme W. Bourdôt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, M.D., Bourdôt, G.W., Hurrell, G.A. et al. Risk analysis for biological weed control – simulating dispersal of Sclerotinia sclerotiorum (Lib.) de Bary ascospores from a pasture after biological control of Cirsium arvense (L.) Scop.. Aerobiologia 18, 211–222 (2002). https://doi.org/10.1023/A:1021339202533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021339202533

Navigation