Skip to main content
Log in

The Smectic Rheology of a Polysiloxane Side Chain Liquid Crystalline Polymer

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The rheology of a side chain liquid crystalline polymer (SLCP) with a polysiloxane backbone was investigated. The dynamic shear moduli of the SLCP in a smectic phase did not show the normal terminal behavior as the homogenous polymeric melts did, and instead, they tended to level off in the low frequency terminal zone. Time–temperature superposition failed for both dynamic moduli in the low frequency terminal zone and the departure from the superposition became more evident in the vicinity of smectic/isotropic transition. The plateau-like moduli in the terminal zone indicated the layer structure of the smectic phase. The steady shear viscosities of the smectic phase exhibited a shear thinning behavior over the shear rates investigated. The shear thinning was lost at low shear rates when the temperature passed the smectic/biphasic border. The shear viscosity and the dynamic moduli showed a divergence in the neighborhood of the smectic/isotropic temperature. The activation energies of the shear viscosity and the moduli were smaller than that of the SLCP with polymethacrylate backbone. The rheological behavior of the SLCP at low frequencies and low shear rates was dominated by the smectogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Rubin, R. M. Kannan and J. A. Kornfield, Macromolecules, 28, 3521 (1995).

    Google Scholar 

  2. S. D. Hudson, A. J. Lovinger, R. G. Larson, D. D. Davis, R. O. Garay and K. Fujishiro, Macromolecules, 26, 5643 (1993).

    Google Scholar 

  3. W. J. Zhou, J. A. Kornfield, V. M. Ugaz, W. R. Burghardt, D. R. Link and N. A. Clark, Macromolecules, 32, 5581 (1999).

    Google Scholar 

  4. I. Quijada-Garrido, H. Siebert, C. Friedrich and C. Schmidt, Macromolecules, 33, 3844 (2000).

    Google Scholar 

  5. D. F. Gu, A. M. Jamieson and S. Q. Wang, J. Rheol., 37, 985 (1993).

    Google Scholar 

  6. R. Zentel and J. Wu, Makromol. Chem., 187, 1727 (1986).

    Google Scholar 

  7. R. M. Kannan, J. A. Kornfield, N. Schwenk and C. Boeffel, Adv. Mater., 6(3), 214 (1994).

    Google Scholar 

  8. R. M. Kannan, S. F. Rubin, J. A. Kornfield and C. Boeffel, J. Rheol., 38, 1609 (1994).

    Google Scholar 

  9. D. J. Alt, S. D. Hudson, R. O. Garay and K. Fujishiro, Macromolecules, 28, 1575 (1995).

    Google Scholar 

  10. D. A. Grabowski and C. Schmidt, Macromolecules, 27, 2632 (1994).

    Google Scholar 

  11. J. Berghausen, J. Fuchs and W. Richtering, Macromolecules, 30, 7754 (1997).

    Google Scholar 

  12. R. M. Kannan, J. A. Kornfield, N. Schwenk and C. Boeffel, Macromolecules, 26, 2050 (1993).

    Google Scholar 

  13. F. Fabre and M. Veyssie, Mol. Cryst. Liq. Cryst. Lett., 4, 99 (1987).

    Google Scholar 

  14. R. H. Colby, J. R. Gillmor, G. Galli, M. Laus, C. K. Ober and E. Hall, Liquid Crystals, 13(2), 233 (1993).

    Google Scholar 

  15. A. Wewerka, G. Floudas, T. Pakula and F. Stelzer, Macromolecules, 34, 8129 (2001).

    Google Scholar 

  16. K. I. Tozaki, M. Kimura and S. Itou, J. Appl. Phys. (Japan), 33, 6633 (1994).

    Google Scholar 

  17. R. Zentel and M. Benalia, Makromol. Chem., 188, 665 (1987).

    Google Scholar 

  18. S. Bhattacharysa and S. V. Letcher, Phys. Rev. Lett., 44(6), 414 (1980).

    Google Scholar 

  19. P. A. Gemmel, G. W. Gray and D. Lacey, Mol. Cryst. Liq. Cryst., 122, 205 (1985).

    Google Scholar 

  20. P. Fabre, C. Casagrande and M. Veyssie, Phys. Rev. Lett., 53(10), 993 (1984).

    Google Scholar 

  21. H. Finkelmann and G. Rehage, Makromol. Chem. Rapid Commun., 3, 859 (1982).

    Google Scholar 

  22. H. Finkelmann, Phil. Trans. Roy. Soc. London A 309, 105 (1983).

    Google Scholar 

  23. H. Ringsdorf and A. Schneller, Makromol. Chem. Rapid Commun., 3, 557 (1982).

    Google Scholar 

  24. V. Percec and C. S. Hsu, Polymer Bull., 23, 463 (1990).

    Google Scholar 

  25. E. Akiyama, M. Ohtomo, Y. Nagase and N. Koide, Macromol. Chem. Phys., 196, 3391 (1995).

    Google Scholar 

  26. D. Taton, A. Le Borgne, N. Farina and C. Neol, Macromol. Chem. Phys., 196, 2941 (1995).

    Google Scholar 

  27. J. B. Reesink, S. J. Picken, A. J. Witteveen and W. J. Mijs, Macromol. Chem. Phys., 197, 1031 (1996).

    Google Scholar 

  28. W. Hawthorne, Ph.D. Thesis, University of York, UK, 1986.

  29. P. Panizza, P. Archambault and D. Roux, J. Phys. II (France), 5, 303 (1995).

    Google Scholar 

  30. K. F. Wissbrun, J. Rheol., 25, 619 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, IK., Chang, S.H. The Smectic Rheology of a Polysiloxane Side Chain Liquid Crystalline Polymer. Journal of Polymer Research 9, 163–168 (2002). https://doi.org/10.1023/A:1021335507404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021335507404

Navigation