Skip to main content
Log in

The Electronic and Magnetic Structure of Iron–Interstitial Metalloid Alloys

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We have studied the Fe-X (X=B, C and N) systems, represented by clusters of atoms, using the discrete variational method. The calculated properties at the cluster's central site are compared with experimental and other theoretical results. The local magnetic, contact magnetic hyperfine field and contact charge density at the central site were calculated for different locations of impurities in bct, fcc and for intermediate structures. The calculated properties for N impurities are somehow different from those obtained for B and C impurities. The reasons behind the large average magnetic moment at Fe site in Fe-N systems were not convincingly clarified, however, distinctive features related to these systems are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, Y., Zhang, W., Zhong, L. and Wang, D., J. Magn. Magn. Mater. 145 (1995), 273.

    Article  Google Scholar 

  2. Herper, H. C., Hoffmann, E. and Entel, P., Phys. Rev. B 60 (1999), 3839.

    Article  ADS  Google Scholar 

  3. Tsunoda, Y., J. Phys. (Condensed Matter) 1 (1989), 10427.

    Article  ADS  Google Scholar 

  4. Coey, J. M. D. and Hong Sun, J. Magn. Magn. Mater. 87 (1990), L251.

    Article  ADS  Google Scholar 

  5. Bangwei, Z., Wanyu, H. and Deqi, Z., Physica B 183 (1993), 205.

    Article  ADS  Google Scholar 

  6. Coey, J. M. D. and Qi, Q., Hyp. Interact. 90 (1994), 265.

    Article  Google Scholar 

  7. Sanchez, F. H. and Fernandez van Raap, M. B., Phys. Rev. B 46 (1992), 9013.

    Article  ADS  Google Scholar 

  8. Ron, M., In: R. L. Cohen (ed), Application of Mossbauer Spectroscopy, Vol. II, Academic Press, New York, 1980, p. 329.

    Google Scholar 

  9. Mertzger, R. M. and Bao, X., J. Appl. Phys. 76 (1994), 6626.

    Article  ADS  Google Scholar 

  10. Coey, J. M. D., J. Appl. Phys. 76 (1994), 6632; Takahashi, M., Shoji, H., Takahashi, H., Nashi, H., Wakiyama, T., Doi, M. and Matsui, M., J. Appl. Phys. 76 (1994), 6642.

    Article  ADS  Google Scholar 

  11. Hafner, J., Acta Materialia 48 (2000), 71.

    Article  Google Scholar 

  12. Elzain, M. E., Ellis, D. E. and Guenzberger, D., Phys. Rev. B 34 (1986), 1430.

    Article  ADS  Google Scholar 

  13. Clementi, E. and Roeftti, C., Atom. Data & Nucl. Data Tables 14 (1974), 177.

    ADS  Google Scholar 

  14. Frazer, B. C., Phys. Rev. 112 (1958), 751.

    Article  ADS  Google Scholar 

  15. Gavriljuk, V. G., Kucherenko, Y. N. and Moravetski, V. I., J. Phys. Chem. Solids 55 (1994), 1181; Kuhnen, C. A., de Figueiredo, R. S. and Drago, V., J. Magn. Magn. Mater. 111 (1992), 95.

    Article  Google Scholar 

  16. Sifkovits, M., Smolinski, H., Hellwig, S. and Weber, W., www.arxiv.org/cond-mat/9810383.

  17. Ishida, S., Kitawatase, K., Fujii, S. and Asano, S., J. Phys. 4 (1992), 765.

    Google Scholar 

  18. Tanaka, H., Harima, H., Yamamoto, T., Yoshida, H. K., Nakata, Y. and Hirotsu, Y., Phys. Rev. B 62 (2000), 15042.

    Article  ADS  Google Scholar 

  19. Fernando, G.W., Watson, R. E., Weinert, M., Kocharian, A. N., Ratnaweera, A. and Tennakone, K., Phys. Rev. B 61 (2000), 375.

    Article  ADS  Google Scholar 

  20. Kanamori, J., Prog. Theor. Phys. (Supplem.) 101 (1990), 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elzain, M.E. The Electronic and Magnetic Structure of Iron–Interstitial Metalloid Alloys. Hyperfine Interactions 141, 35–45 (2002). https://doi.org/10.1023/A:1021297818649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021297818649

Keywords

Navigation