Skip to main content
Log in

Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Cork oak forests in Mediterranean, southeastern France represent animportant ecosystem in terms of both ecological and economical values, but aredeclining due to conservation problems. While management protocols are now inplace for the long-term conservation of this ecotype, we require a betterunderstanding of cork oak nutrition to assist with management. Here we usefoliar nutrient analyses for two objectives: firstly, to assess to what extentvariations in nutrient content are explained by seasonal and spatialvariability, and second, to document the nutrient dynamics of cork oak trees innatural conditions during one biological cycle (16 months) in the Maures massif(western part of the siliceous Provence). Main results showed that time was theprimary factor influencing cork oak nutrition and was mainly expressed by leafageing process. Spatial variability was a 'secondary determinant' of nutrient variations, but was more important at the very early stages of leafgrowth according to leafing and nutrient flushing, and reduced with leaf age.Nutritional responses of cork oak trees fitted general trends observed in theliterature, with some regional differences. The properties of siliceous soilalso influenced the uptake of some nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts R. 1995. The avantages of being evergreen. Trends in Ecology and Evolution 10: 402-407.

    Google Scholar 

  • Arvy R.P. 1986. Distribution du Sélénium et de seize éléments dans les différents organes de Trifolium repens. Plant and Soil 92: 29-36.

    Google Scholar 

  • Aubert G. (ed.) 1978. Méthodes D'analyse Des Sols. Centre National de Documentation Pédagogique, Paris.

  • Bieleski R.L. 1973. Phosphate pools, phosphate transport and phosphate availability. Annual Review of Plant Physiology 24: 225-252.

    Google Scholar 

  • Bonneau M. 1988. Le diagnostic foliaire. Revue Forestière Française 40: 19-28.

    Google Scholar 

  • Bouma D. 1983. Diagnosis of mineral deficiencies using plant tests. In: Läuchli A. and Bieleski R. (eds), Inorganic Plant Nutrition. Handbook of Plant Physiology 15A. Springer-Verlag, New York, pp. 120-146.

    Google Scholar 

  • Boxman A.W., Cobben P.L.W. and Roelofs J.G.M. 1994. Does (K, Mg, Ca, P) fertilisation lead to recovery of tree health in a nitrogen stressed Quercus rubra L. stand? Environmental Pollution 85: 297-303.

    Google Scholar 

  • Canadell J. and Vila M. 1992. Variation in tissue element concentrations in Quercus ilex L., over a rang of different soils. Vegetatio 99: 273-282.

    Google Scholar 

  • Caritat A. and Terradas J. 1990. Micronutrients in biomass fractions of holm oak, beech and fire forests of the Montseny massif (Catalonia, NE Spain). Annales des Sciences Forestières 47: 45-52.

    Google Scholar 

  • Caritat A., Molinas M. and Gutierrez E. 1996. Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, South-Western Spain). Forest Ecology and Management 86: 113-120.

    Google Scholar 

  • Cecil J.S., Barth G.E., Maier N.A., Chvyl W.L. and Bartetzko M.N. 1995. Leaf chemical composition and nutrient removal by stems of Leucadendron cvv. Silvan Red and Safari sunset. Australian Journal of Experimental Agriculture 35: 547-555.

    Google Scholar 

  • Chabot B.F. and Hicks D.J. 1982. The ecology of leaf life spans. Annual Review of Ecology and Systematics 13: 229-259.

    Google Scholar 

  • Chapin F.S. III 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233-260.

    Google Scholar 

  • Chapin F.S. III, Johnson D.A. and Mc Kendrick J.D. 1980. Seasonal movement of nutrients implants of differing growth form in Alaskan Tundra ecosystem: implications for herbivory. Journal of Ecology 68: 189-209.

    Google Scholar 

  • Charlot G. 1978. Dosages absorptiométriques des éléments minéraux.

  • Correia O.A., Oliveira G., Martins-Loução M.A. and Catarino F.M. 1992. Effects of bark-stripping on the water relations of Quercus suber L. Scientia Gerundensis 18: 195-204.

    Google Scholar 

  • Daget P. 1984. Introduction à une théorie générale de la méditerranéité. Actual Botany 131: 31-36.

    Google Scholar 

  • del Arco J.M., Escudero A. and Garrido M.V. 1991. Effects of site characteristics on nitrogen retranslocation from senescent leaves. Ecology 72: 701-708.

    Google Scholar 

  • Dell B. and Robinson J.M. 1993. Symptoms of mineral nutrient deficiencies and the nutrient concentration ranges in seedlings of Eucalyptus maculata Hook. Plant and Soil 155/156: 255-261.

    Google Scholar 

  • de Visser P.H.B. 1992. The relations between chemical composition of oak tree rings, leaf, bark, and soil solution in a partly mixed stand. Canadian Journal of Forest Research 22: 1824-1831.

    Google Scholar 

  • Dreux P. 1986. Précis d'écologie. University Press of France, Paris.

    Google Scholar 

  • Ericsson T. 1995. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant and Soil 168: 205-214.

    Google Scholar 

  • Ernst W.H.O. 1995. Sampling of plant material for chemical analysis. The Science of the Total Environment 176: 15-24.

    Google Scholar 

  • Escudero A., Manzano J.J. and Del Arco J.M. 1987. Nitrogen concentrations in the leaves of different Mediterranean woody species. Ecologia Mediterranea 13: 11-17.

    Google Scholar 

  • Escudero A., Del Arco J.M. and Garrido M.V. 1992. The efficiency of nitrogen retranslocation from leaf biomass in Quercus ilex ecosystems. Vegetatio 99: 225-237.

    Google Scholar 

  • Faussillon E. 1984. Sauver le liège du Var. Forêt Méditerranéenne 6: 43-46.

    Google Scholar 

  • Faussillon E. 1988. La covaliège et le liège varois. Forêt Méditerranéenne 10: 179-180.

    Google Scholar 

  • Fitter A.H. and Hay R.K.M. 1989. Environmental physiology of plants. Academic Press, New york.

    Google Scholar 

  • Floret C., Galan M.J., Le Floc'h E., Leprince F. and Romane F. 1989a. Plant phenomorphological studies in Mediterranean type ecosystems. In: Orshan G. (ed.), Geobotany 12 A. Springer-Verlag, Berlin, pp. 9-97.

    Google Scholar 

  • Floret C., Galan M.J., Le Floc'h E., Rapp M. and Romane F. 1989b. Organisation de la structure, de la biomasse et de la minéralomasse d'un taillis ouvert de chêne vert. Acta OEcologica 10: 245-262.

    Google Scholar 

  • Forgeard F. 1977. L'écosystème lande dans la région de Paimpont. Etude du cycle de la matière organique et des éléments minéraux., Rennes, France.

    Google Scholar 

  • Gallardo J.F., Santa Regina I., Gonzalez M.I.N. and Egido J.A. 1991. Evolution of the mineral composition of the leaves and branches in three forest ecosystems of the Sierra de Bejar mountain. In: Berthelin J. (ed.), Developments in Geochemitry 6 - Diversity of Environmental Biogeochemistry. Elsevier, Amsterdam, pp. 477-484.

    Google Scholar 

  • Glass A.D.M. 1989. Plant nutrition. An introduction to current concepts. Jones and Bartlett Pub.

  • Göransson A. 1993. Growth and nutrition of small Betula pendula plants at different relative addition rates of iron. Trees 8: 31-38.

    Google Scholar 

  • Gray J.T. 1983. Nutrient use by evergreen and deciduous shrubs in Southern California. I-Community nutrient cycling and nutrient efficiency. Journal of Ecology 71: 21-41.

    Google Scholar 

  • Guillet B. and Souchier B. 1979. Les oxyhydroxydes amorphes et cristallins dans les sols (fer, aluminium, manganèse, silicium). In: Bonneau M. and Souchier B. (eds), Pédologie. II-Constituants et propriétés du sol. Masson, Paris, pp. 16-37.

  • Hoehne H. 1964. Untersuchungen über die jahreszeitlichen veränderungen des gewichtes und element gehaltes von fichtnnadeln in jüngern Beständen des Ostgebirges. Archiv für Forstwesen 13: 747-774.

    Google Scholar 

  • Horst W. and Marschner H. 1978. Effects of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant and Soil 50: 287-303.

    Google Scholar 

  • Hylander L. 1995. Effects of lime, phosphorus, manganese, copper and zinc on plan mineral composition, yield of barley, and level of extractable nutrients for an acid Swedish mineral soil. Communication in Soil Science and Plant Analysis 26: 17-18.

    Google Scholar 

  • Jackson M. 1958. Soil chemical analyses. In: nutrient cycling in an excessively rainfed subtropical grassland at Cherrapunji. Prentice-Hall, London.

    Google Scholar 

  • Larcher W. 1983. Physiological plant ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Livrelli J.N. 1993. Utilisation de la méthode du diagnostic foliaire chez les végétaux ligneux sclérophylles méditerranéens pour l'étude comparée de groupements préforestiers et forestiers. Application au problème du débroussaillement., Marseille, France.

  • Loisel R. 1976. La végétation de l'étage méditerranéen dans le Sud-Est continental français., Marseille, France.

    Google Scholar 

  • Ludwig J.A. and Reynolds J.F. 1988. Statistical Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Madeira M. and Serralheiro F. 1990. Decomposiçâo de folhas de sobreiro e eucalipto e colonizaçâo pela mesofauna. Resultados preliminares. Pedon 9: 3-20.

    Google Scholar 

  • Marrs R.H. 1978. Seasonal changes and multivariate studies of the mineral element status of several members of the Ericaceae. Journal of Ecology 66: 533-545.

    Google Scholar 

  • Marschner H. 1986. Mineral nutrition of higher plants. Academic Press, New York.

    Google Scholar 

  • Martin-Prével P. 1978. Rôle des éléments minéraux chez les végétaux. Fruits 33: 521-529.

    Google Scholar 

  • Martin-Prével P., Gagnard J. and Gautier P. 1984. L'analyse végétale dans le contrôle de l'alimentation des plantes tempérées et tropicales. Lavoisier, Paris.

    Google Scholar 

  • Mayor X. and Ro0da F. 1992. Is primary production in holm oak forests nutrient limited? A correlation approach. Vegetatio 99: 209-217.

    Google Scholar 

  • Mooney H. and Rundel P. 1979. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum in the California chaparral. Botanical Gazette 140: 109-113.

    Google Scholar 

  • Moorby J. and Besford R. 1983. Mineral nutrition and growth. In: Läuchli A. and Bieleski R. (eds), Inorganic Plant Nutrition. Handbook of Plant Physiology 15 B. Springer-Verlag, New York, pp. 481-527.

    Google Scholar 

  • Moorhead K. and Mc Arthur J. 1996. Spatial and temporal patterns of nutrient concentrations in foliage of riparian species. American Midland Naturalist 136: 29-41.

    Google Scholar 

  • Natividade J.V. 1956. Subériculture. Ecole Nationale des Eaux et Forêts, Nancy, France, French version translated from Portuguese book "subericultura'.

  • Oliveira G., Martins-Louçâo M., Correia O.A. and Catarino F. 1996a. Nutrient dynamics in crown tissues of cork oak (Quercus suber L.). Trees 10: 247-254.

    Google Scholar 

  • Oliveira G., Werner C. and Correia O. 1996b. Are ecophysiological responses influenced by crown position in cork-oak? Annales des Sciences Forestières 53: 235-241.

    Google Scholar 

  • Orgeas J. 1997. Dynamique des nutriments de Quercus suber L. et production de liège en relation avec les variables environnementales-Le cas du massif des Maures (Var)., Marseille, France.

    Google Scholar 

  • Orgeas J. and Bonin G. 1996. Variabilité des nutriments foliaires de Quercus suber L. dans différentes situations écologiques dans le massif des Maures (Var, France), et relations avec la production de liège. Annales des Sciences Forestières 53: 615-624.

    Google Scholar 

  • Pardé J. and Bouchon J. 1988. Dendrométrie. ENGREF, Nancy.

  • Piñol J., Terradas J., Avila A. and Rodà F. 1995. Using catchments of contrasting hydrological conditions to explore climate change effects on water and nutrient flows in Mediterranean forest. In: Moreno J. and Oechel W. (eds), Global Change and Mediterranean-type Ecosystems. Springer-Verlag, New York, pp. 371-381.

    Google Scholar 

  • Pugnaire F.I. and Chapin F.S. III 1993. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74: 124-129.

    Google Scholar 

  • Rapp M., Ed Derfoufi F. and Blanchard A. 1992. Productivity and nutrient uptake in a holm oak (Quercus ilex L.) stand and during regeneration after clearcut. Vegetatio 99: 263-272.

    Google Scholar 

  • Richter G. 1993. Métabolisme des végétaux, physiologie et biochimie.

  • Robert B., Caritat A., Bertoni G., Vilar L. and Molinas M. 1996a. Nutrient content and seasonal fluctuations in the leaf component of cork oak (Quercus suber L.) litterfall. Vegetatio 122: 29-35.

    Google Scholar 

  • Robert B., Bertoni G., Sayag D. and Masson P. 1996b. Assessment of mineral nutrition of cork oak through foliar analysis. Communication in Soil Science and Plant Analysis 27: 2091-2109.

    Google Scholar 

  • Robson A. and Pitman M. 1983. Interactions between nutrients in higher plants. In: Läuchli A. and Bieleski R. (eds), Inorganic Plant Nutrition. Handbook of Plant Physiology 15 A. Springer-Verlag, New York, pp. 147-180.

    Google Scholar 

  • Sabaté S., Sala A. and Gracia C.A. 1995. Nutrient content in Quercus ilex canopies: seasonal and spatial variation within a catchment. Plant and Soil 168: 297-304.

    Google Scholar 

  • Shelp 1995. Boron mobility in plants. Physiologia Plantarum 94: 356-361.

    Google Scholar 

  • Siedlecka A. 1995. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Societatis Botanicorum Poloniae 64: 265-272.

    Google Scholar 

  • Specht R. 1988. Vegetation, nutrition and climate-data tables. Natural vegetation-ecomorphological characters. In: Mediterranean Type Ecosystems a Data Source Book. Tasks for Vegetation Science. Kluwer, Dordrecht, pp. 21-27.

    Google Scholar 

  • Stamou G.P. 1998. Arthropods of Mediterranean-type ecosystems. Springer-Verlag, Berlin.

    Google Scholar 

  • Steward F. and Durzan D. 1965. Metabolism of nitrogenous compounds. In: Steward F. (ed.), Plant Physiology 4 A. Academic Press, New York, pp. 379-686.

    Google Scholar 

  • Tamm C. 1995. Towards an understanding of the relations between tree nutrition, nutrient cycling and environment. Plant and Soil 168-169: 21-27.

    Google Scholar 

  • van den Driessche R. 1984. Nutrient storage, retranslocation and relationship of stress to nutrition. In: Bowen G. and Nambiar E. (eds), Nutrition of Plantation Forests. Academic Press, New York, pp. 181-209.

    Google Scholar 

  • Vignes E. 1988. Sylviculture du chêne-liège: directives de l'Office National des Forêts dans le Var. Forêt Méditerranéenne 10: 164-165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Orgeas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orgeas, J., Ourcival, JM. & Bonin, G. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecology 164, 201–211 (2003). https://doi.org/10.1023/A:1021278421821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021278421821

Navigation