Skip to main content
Log in

Relativistic Kinematic Honeycombs

  • Published:
Journal of Genetic Counseling

Abstract

In this paper, we study the honeycombs of the relativistic velocities space using the fact that this space has a hyperbolic space structure. For the three-dimensional case there are only four of these honeycombs with bounded cells and, since in this space there is a characteristic length, the cells have a fixed size. This fact, strongly limit the possible relative velocities between the vertices of the honeycombs. We consider as a possible application to cosmology the interpretation of these honeycombs as discrete large scale mass distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Sommerfield, “Uber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie,” Phys. Z. 10(22), 826–829 (1909).

    Google Scholar 

  2. M. Juarez and M. Santander, “Turns for the Lorentz group,” J. Phys. A 15, 3411–3424 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. A. Ungar, “The Bifurcation Approach to Hyperbolic Geometry,” Found. Phys. 30(8), 1257–1282 (2000).

    Article  MathSciNet  Google Scholar 

  4. C. Criado and N. Alamo, “A link between the bounds on relativistic velocities and areas of hyperbolic triangles,” Am. J. Phys. 69(I), 306–310 (2001).

    Article  ADS  Google Scholar 

  5. H. S. M. Coxeter, “Regular honeycombs in hyperbolic space,” in The Beauty of Geometry: Twelve Essays (Dover, New York, 1999), pp. 199–214.

    Google Scholar 

  6. W. P. Thurston, Three-Dimensional Geometry and Topology, Vol. 1 (Princeton University Press, New Jersey, 1997).

    MATH  Google Scholar 

  7. W. Rindler, Essential Relativity, 2nd edn. (Springer, New York, 1986).

    Google Scholar 

  8. J. M. Lévy-Leblond and J. P. Provost, “Additivity, rapidity, relativity,” Am. J. Phys. 47, 1045–1049 (1979).

    Article  ADS  Google Scholar 

  9. J. M. Lévy-Leblond, “Speed(s),” Am. J. Phys. 48, 345–347 (1980).

    Article  ADS  Google Scholar 

  10. E. B. Vinberg and O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature,” in Geometry II, E. B. Vinberg, ed. (Springer, New York, 1993), pp. 139–248.

    Chapter  Google Scholar 

  11. D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov, “Geometry of spaces of constant curvature,” in Geometry II, E. B. Vinberg, ed. (Springer, New York, 1993), pp. 1–138.

    Chapter  Google Scholar 

  12. M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, New Jersey, 1976).

    MATH  Google Scholar 

  13. E. Battaner, E. Florido, and J. Jimenez-Vicente, “Magnetic fields and large scale structure in a hot universe I. General equations,” A & A 326, 13–22 (1997).

    ADS  Google Scholar 

  14. E. Florido and E. Battaner, “Magnetic fields and large scale structure in a hot universe II. Magnetic flux tubes and filamentary structure,” A & A 327, 1–7 (1997).

    ADS  Google Scholar 

  15. E. Battaner, E. Florido, and J. M. Garcia-Ruiz, “Magnetic fields and large scale structure in a hot universe III. The polyhedric network,” A & A 327, 8–10 (1997).

    ADS  Google Scholar 

  16. E. Battaner and E. Florido, “Magnetic fields and large scale structure in a hot universe IV. The egg-carton universe,” A&A 338, 383–385 (1998).

    ADS  Google Scholar 

  17. T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay, “Large-scale distribution of galaxies at the galactic poles,” Nature 343, 726–728 (1990).

    Article  ADS  Google Scholar 

  18. J. Einasto, M. Einasto, P. Frisch, S. Gottlöber, V. Müller, V. Saar, A.A. Starobinsky, E. Tago, D. Tucker, and H. Andernach, “The Supercluster-void network II. An oscillating cluster correlation function,” MNRAS 269, 801–812 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Criado.

Additional information

Partially supported by the Spanish DGICYT Research Grant PB97-1080.

Partially supported by the Spanish DGICYT Research Grant PB97-1095.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Criado, C., Alamo, N. Relativistic Kinematic Honeycombs. Foundations of Physics Letters 15, 345–358 (2002). https://doi.org/10.1023/A:1021264527657

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021264527657

Key words

Navigation