Skip to main content
Log in

Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mesoporous Fe–MCM41 samples (Si/Fe=25) were synthesized and characterized under evacuation and reducing/oxidizing treatments by in situ FTIR and Mössbauer spectroscopies. Both Fe(II) and Fe(III) located in low coordination states in top layers of pore walls exhibit Lewis acidity and may participate in Fe(III) ↔ Fe(II) processes at low temperatures (570 K). Furthermore, Fe(III) ↔ Fe(II) cycles can be achieved and repeated with participation of the full amount of iron at higher temperatures (670 K). The accompanying formation of oxygen vacancies and restoration of the structure in the reverse process does not result in extended damages; the MCM41 structure retains its stability under the conditions applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corma, A., Chem. Rev. 97 (1997), 2373.

    Google Scholar 

  2. Schacht, S., Janicke, M. and Schüth, F. Microporous and Mesoporous Materials 22 (1998), 485.

    Google Scholar 

  3. Biz, S. and Occelli, M. L., Catal. Rev. – Sci. Eng. 40 (1998), 329.

    Google Scholar 

  4. Yuan, Z. Y., Liu, S. Q., Chen, T. H., Wang, J. Z. and Li, H. X., J. Chem. Soc., Chem. Commun. (1995), 973.

  5. Badamali, S. K., Vinodhkumar, R., Sundararajan, U. and Selvam, P., In: V. Murugesan, B. Arabindoo and M. Palanichamy (eds), Recent Trends in Catalysis, Narosa Publ. House, New Delhi, 1999, p. 545.

    Google Scholar 

  6. He, N.-Y., Bao, S.-L. and Xu, Q.-H., Stud. Surf. Sci. Catal. 105 (1997), 85.

    Google Scholar 

  7. F. Béland, Echchaded, B. and Bonneviot, L., Stud. Surf. Sci. Catal. 130 (2000), 2945.

    Google Scholar 

  8. Badamali, S. K., Sakthivel, A. and Selvam, P., Catal. Lett. 65 (2000), 153.

    Google Scholar 

  9. He, N., Bao, S. and Xu, Q., Appl. Catal. A 169 (1998), 29.

    Google Scholar 

  10. Pál-Borbély, G., Szegedi, Á., Lázár, K. and Beyer, H. K., Stud. Surf. Sci. Catal. 135 (2001), 150.

    Google Scholar 

  11. Lázár, K., Borbély, G. and Beyer, H. K., Zeolites 11 (1991), 214.

    Google Scholar 

  12. Lázár, K., Lejeune, G., Ahedi, R. K., Shevade, S. S. and Kotasthane, A. N., J. Phys. Chem. B. 102 (1998), 4865.

    Google Scholar 

  13. Parry, E. P., J. Catalysis 2 (1963), 371.

    Google Scholar 

  14. Yamada, K., Kondo, S. and Segawa, K., Microporous and Mesoporous Materials 35–36 (2000), 227.

    Google Scholar 

  15. Rakic, V. M., Hercigonja, R. V. and Dondur, V. T., Microporous and Mesoporous Materials 27 (1999), 27.

    Google Scholar 

  16. Burns, R. G., Hyp. Interact. 91 (1994), 739.

    Google Scholar 

  17. Uytterhoeven, J. B., Christner, L. G. and Hall, W. K., J. Phys. Chem. 76 (1965), 2117.

    Google Scholar 

  18. Burns, R. G., In: K. Prassides (ed.), Mixed Valency Systems, Applications in Chemistry, Physics and Biology, NATO ASI Series, Vol. 343, Kluwer, 1991, p. 175.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lázár, K., Pál-Borbély, G., Szegedi, Á. et al. Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41. Hyperfine Interactions 139, 19–31 (2002). https://doi.org/10.1023/A:1021254802094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021254802094

Navigation