Skip to main content
Log in

Calorimetric Investigation of Chiral Recognition Processes in a Molecularly Imprinted Polymer

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The molecular imprinting of polymers is a promising concept for designing highly selective receptor systems which is now fairly well understood from a structural point of view. However, only limited information is available on the thermodynamics of enantioselective recognition in imprints. In order to study this problem, the interactions of a pair of enantiomers (phenyl-α-L- and phenyl-α-D-mannopyranoside) with a well-characterized imprinted polymer (D-enantiomer acted as template) have been investigated by means of isothermal batch and titration calorimetry. Batch calorimetric measurements with unstirred samples are affected by strong solvent–polymer interactions, such as swelling, causing large changes of the blank effects over long periods of time. Isothermal titration calorimetric measurements proved to be more efficient for studying imprinted polymers. The enthalpies of rebinding for both enantiomers strongly decrease with increasing degree of occupation of the available cavities. Only at low degrees of occupation (< 50%) was a significantly higher endothermic heat effect for the (D)-enantiomer (template) detected which indicates an enantioselective rebinding. The overall heats of rebinding were found to be endothermic and are composed of several different contributions that are discussed. In summary, the reported calorimetric results are generally in accordance with the proposed mechanism of chiral recognition in this type of molecular imprinted polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Vögtle: Supramolecular Chemistry, John Wiley (1991).

  2. D.J. Cram: Angew. Chem. 100, 1041 (1988); Angew. Chem. Int. Ed. Engl. 27, 1009 (1988).

    Google Scholar 

  3. J.M. Lehn: Angew. Chem. 100, 91 (1988); Angew. Chem. Int. Ed. Engl. 27, 89 (1988).

    Google Scholar 

  4. G. Wenz: Angew. Chem. 106, 851 (1994); Angew. Chem. Int. Ed. Engl. 33, 803 (1994).

    Google Scholar 

  5. Reviews see, e.g., (a) G. Wulff: Angew. Chem. 107, 1958 (1995); Angew. Chem. Int. Ed. Engl. 34, 1812 (1995). (b) K.J. Shea: Trends Polym. Sci. 2, 166 (1994). (c) K. Haupt and K. Mosbach: Trends Biotechnol. 16, 468 (1998). (d) M.J. Whitcombe and E.N. Vulfson: Adv. Mat. 7, 467 (2001).

    Google Scholar 

  6. (a) G. Wulff and M. Minarik: J. High Resolut. Chromatogr., Chromatogr. Commun. 9, 607 (1986). (b) B. Sellergren, M. Lepistö, and K. Mosbach: J. Am. Chem. Soc. 110, 5853 (1988). (c) B. Sellergren and K.J. Shea: J. Chromatogr. 654, 17 (1993).

    Google Scholar 

  7. (a) B. Sellergren: J. Chromatogr. 906, 227 (2001). (b) L.I. Andersson: J. Chromatogr. B 745, 3 (2000).

    Google Scholar 

  8. (a) J.V. Beach and K.J. Shea: J. Am. Chem. Soc. 116, 379 (1994). (b) G. Wulff, T. Groß, and R. Schönfeld: Angew. Chem. 109, 2049 (1997); Angew. Chem. Int. Ed. Engl. 36, 1961 (1997).

    Google Scholar 

  9. G. Chen, L. Guan, C.-T. Chen, L. Fu, V. Sundaresan, and F.H. Arnold: Nature Biotechnology 15, 354 (1997).

    Google Scholar 

  10. G. Vlatakis, L.I. Andersson, R. Müller, and K. Mosbach: Nature (London) 361, 645 (1993).

    Google Scholar 

  11. (a) S. Saraswathi and M.H. Keyes: Enzyme. Microb. Technol. 6, 98 (1985). (b) L. Braco, K. Dabulis, and A.M. Klibanov: Proc. Natl. Acad. Sci., USA 87, 274 (1990).

    Google Scholar 

  12. (a) P. Sajonaz, M. Kele, G. Zhong, B. Sellergren, and G. Guiochon: J. Chromatogr. A 810, 1 (1998). (b) K. Miyabe and G. Guiochon: Biotechn. Progr. 16, 617 (2000). (c) C. Baggiani, G. Giraudi, F. Trotta, C. Giovannoli, and A. Vanni: Talanta 51, 71 (2000). (d) R.J. Umpleby II, S.C. Baxter, M. Bode, J.K. Berch, R.N. Shah, and K.D. Shimizu: Anal. Chim. Acta 435, 35 (2001). (e) W.-Y. Chen, C.-S. Chen, and F.-Y. Lin: J. Chromatogr. A 923, 1 (2001).

    Google Scholar 

  13. G. Wulff, J. Vietmeier, and H.-G. Poll: Makromol. Chem. 188, 731 (1987).

    Google Scholar 

  14. G. Wulff and G. Kirstein: Angew. Chem. 102, 706 (1990); Angew. Chem. Int. Ed. Engl. 29, 684 (1990). See also G. Kirstein: PhD Thesis, Heinrich-Heine-University Düsseldorf (1989).

    Google Scholar 

  15. H.-G. Poll: PhD Thesis, Heinrich-Heine-University Düsseldorf (1986).

    Google Scholar 

  16. R. Kirchner, J. Seidel, and G. Wolf: Thermochim. Acta 310, 19 (1998).

    Google Scholar 

  17. G. Wulff, R. Grobe-Einsler, W. Vesper, and A. Sarhan: Makromol. Chem. 178, 2817 (1977).

    Google Scholar 

  18. J.M. Connor and V.C. Bulgrin: J. Inorg. Nucl. Chem. 29, 1953 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, R., Seidel, J., Wolf, G. et al. Calorimetric Investigation of Chiral Recognition Processes in a Molecularly Imprinted Polymer. Journal of Inclusion Phenomena 43, 279–283 (2002). https://doi.org/10.1023/A:1021243826862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021243826862

Navigation