Skip to main content
Log in

A Nonstatistical Approach to the Prediction of Regular Structures in Proteins by the Example of α Helices

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A new approach to the analysis of regular structures in proteins that is based on the method of molecular mechanics is proposed. The method uses only the information about the amino acid sequence. The α-helical conformation was simulated using the ICM program of molecular mechanics. Energy profiles of the sequences in the α-helical conformation, spanning the entire polypeptide chain, were plotted for eight proteins from the Protein Data Bank. The regions of each profile that exhibit energy minima were found to correspond to the α-helical regions of the real spatial structure of the protein. Twenty-four out of 25 helices were distinctly pronounced, which indicates a rather high accuracy of the prediction. The energy profiles also help reveal the short regions that correspond to 3/10-helices and the turns that include local α-helical conformations. Unlike the known statistical methods of prediction, this method makes it possible to establish the physical principles of the formation of α-helical conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Persson, B., EXS, 2000, vol. 88, pp. 215-231.

    Google Scholar 

  2. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., and Nielsen, H., Bioinformatics, 2000, vol. 16, pp. 412-424.

    Google Scholar 

  3. Zhang, C.T. and Zhang, R., Proteins, 2001, vol. 43, pp. 520-522.

    Google Scholar 

  4. Popov, E.M., Problema belka (The Protein Problem), Ivanov, V.T., Ed., Moscow: Nauka, 1996, vol. 2, pp. 230-331.

    Google Scholar 

  5. Lim, V.I., J. Mol. Biol., 1974, vol. 88, pp. 873-894.

    Google Scholar 

  6. Ptitsyn, O.B. and Finkelstein, A.V., Biopolymers, 1983, vol. 22, pp. 15-25.

    Google Scholar 

  7. Kuwajima, K., Semisotnov, G.V., Finkelstein, A.V., Sugai, S., and Ptitsyn, O.B., FEBS Lett., 1993, vol. 334, pp. 265-268.

    Google Scholar 

  8. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne,P.E., Nucleic Acids Res., 2000, vol. 28, pp. 235-242.

    Google Scholar 

  9. Abagyan, R., Totrov, M., and Kuznetsov, D., J. Comput. Chem., 1994, vol. 15, pp. 488-506.

    Google Scholar 

  10. Abagyan, R.A. and Totrov, M., J. Comput. Chem., 1999, vol. 151, pp. 402-421.

    Google Scholar 

  11. Wilmot, C.M. and Thornton, J.M., Protein Eng., 1990, vol. 3, pp. 479-493.

    Google Scholar 

  12. Kumar, S. and Bansal, M., Proteins, 1998, vol. 31, pp.460-476.

    Google Scholar 

  13. Kumar, S. and Bansal, M., Biophys. J., 1998, vol. 75, pp.1935-1944.

    Google Scholar 

  14. Petrey, D. and Honig, B., Protein Sci., 2000, vol. 9, pp.2181-2191.

    Google Scholar 

  15. Luescher, I., Romero, P., Kuznetsov, D., Rimoldi, D., Coulie, P., Cerrotini, J.-C., and Jongeneel, V., J. Biol. Chem., 1996, vol. 271, pp. 12 463-12 471.

    Google Scholar 

  16. Anjuere, F., Kuznetsov, D., Romero, P., Cerrotini, J.-C., Jongeneel, V., and Luescher, I., J. Biol. Chem., 1997, vol.272, pp. 8505-8514.

    Google Scholar 

  17. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., and Thornton, J.M., Structure, 1997, vol. 5, pp. 1093-1108.

    Google Scholar 

  18. Laskowski, R.A., Nucleic Acids Res., 2001, vol. 29, pp.221-222.

    Google Scholar 

  19. Cantor, C.R. and Schimmel, P.R., Biophysical Chemistry: Technique for the Study of Biological Structure and Function, San Francisco: Freeman, 1984, vol. 1. Translated under the title Biofizicheskaya khimiya, Moscow: Mir, 1984, vol. 1.

    Google Scholar 

  20. Metropolis, N.A., Rosenbluth, A.W., Rosenbluth, N.M., Teller, A.H., and Teller, E., J. Chem. Phys., 1953, vol. 21, pp. 1085-1090.

    Google Scholar 

  21. Momany, F.A., McGuire, R.F., Burgess, A.W., and Scheraga, H.A., J. Phys. Chem., 1975, vol. 79, pp. 2361-2380.

    Google Scholar 

  22. Nemethy, G., Pottle, M.S., and Scheraga, H.A., J. Phys. Chem., 1983, vol. 87, pp. 1833-1851.

    Google Scholar 

  23. Nemethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., and Scheraga, H.A., J. Phys. Chem., 1992, vol. 96, pp. 6472-6484.

    Google Scholar 

  24. Pitera, J.W. and Kollman, P.A., Proteins, 2000, vol. 41, pp. 385-397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilosanidze, G.T., Kutsenko, A.S., Esipova, N.G. et al. A Nonstatistical Approach to the Prediction of Regular Structures in Proteins by the Example of α Helices. Russian Journal of Bioorganic Chemistry 28, 437–444 (2002). https://doi.org/10.1023/A:1021230330229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021230330229

Navigation