Skip to main content
Log in

Zooplankton swarms: characteristics, proximal cues and proposed advantages

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This review focuses on monospecific swarms of four taxonomic groups of small crustaceans: three groups are marine copepods: oithonids (Oithona and Dioithona), Acartia species and Calanus species; and the fourth group includes freshwater cladoceran species in the Order Anomopoda. For each of these groups there is a substantial literature on swarming behavior from field studies and laboratory experiments. Swarming characteristics of each taxonomic group are reviewed, proximal cues for swarming are described, comparisons are made for proposed advantages of swarming, and future research directions are suggested. Swarming characteristics of Calanus spp. are distinctly different from those of the smaller crustaceans: the oithonids, acartiids and cladocerans. In a conceptual model proposed for the smaller crustaceans, swarming behavior is affected by their interactions with light cues, water currents and turbulence, behavior of their predators and prey, and abundance of other trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, A. L., 1982. Aggregation of spawning appendicularians in surface windrows. Bull. mar. Sci. 32: 250-254.

    Google Scholar 

  • Alldredge, A. L., B. H. Robison, A. Fleminger, J. J. Torres, J. M. King & W. M. Hamner, 1984. Direct sampling and in situ observation of a persistent copepod aggregation in the mesopelagic zone of the Santa Barbara Basin. Mar. Biol. 80: 75-81.

    Google Scholar 

  • Ambler, J. W., F. D. Ferrari & J. Fornshell, 1991. Population structure and swarm formation of the cyclopoid copepod Dioithona oculata near mangrove shores. J. Plankton Res. 13: 1257-1272.

    Google Scholar 

  • Ambler, J. W., S. A. Broadwater, E. J. Buskey & J. O. Peterson, 1996. The mating behavior of Dioithona oculata in swarms. In Lenz, P. H., D. K. Hartline, J. E. Purcell & D. L. Macmillan (eds), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach Publishers, Amsterdam (The Netherlands): 287-300.

    Google Scholar 

  • Ambler, J. W., F. D. Ferrari, J. A. Fornshell & E. J. Buskey, 1999. Diel cycles of molting, mating, egg sac production and hatching in the swarm forming cyclopoid copepod Dioithona oculata. Plankton Biol. Ecol. 46: 120-127.

    Google Scholar 

  • Buskey, E. J., J. O. Peterson & J. W. Ambler, 1995. The role of photoreception in the swarming behavior of the copepod Dioithona oculata. J. mar. fresh. Behav. Physiol. 25: 1-13.

    Google Scholar 

  • Buskey, E. J., J. O. Peterson & J. W. Ambler, 1996. The swarming behavior of the copepod Dioithona oculata: in situ and laboratory studies. Limnol. Oceanogr. 41: 513-521.

    Google Scholar 

  • Carleton, J. H. & W. M. Hamner, 1989. Resident mysids: community structure, abundance and small-scale distributions in a coral reef lagoon. Mar. Biol. 102: 461-472.

    Google Scholar 

  • Colebrook, J. M., 1960. Some observations of zooplankton swarms in Windermere. J. anim. Ecol. 29: 241-242.

    Google Scholar 

  • Davis, C. S., S. M. Gallager & A. R. Solow, 1992. Microaggregations of oceanic plankton observed by towed video microscopy. Science 257: 230-232.

    Google Scholar 

  • Dodson, S. I. & D. G. Frey, 1991. Cladocera and other Branchipoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc., San Diego: 723-786.

    Google Scholar 

  • Emery, A. R., 1968. Preliminary observations on coral reef plankton. Limnol. Oceanogr. 13: 293-303.

    Google Scholar 

  • Hamilton, W. D., 1971. Geometry for the selfish herd. J. theor. Biol. 31: 1-8.

    Google Scholar 

  • Hamner, W. M., 1988. Behavior of plankton and patch formation in pelagic ecosystems. Bull. mar. Sci. 43: 752-757.

    Google Scholar 

  • Hamner, W. & J. Carleton, 1979. Copepod swarms: attributes and role in coral reef ecosystems. Limnol. Oceanogr. 24: 1-14.

    Google Scholar 

  • Hamner, W. M., P. P. Hamner, S. W. Strand & R. W. Gilmer, 1983. Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling, and molting. Science 220: 433-435.

    Google Scholar 

  • Hamner, W. M., L. P. Madin, A. L. Alldredge, R. W. Gilmer & P. P. Hamner, 1975. Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol. Oceanogr. 20: 907-917.

    Google Scholar 

  • Haury, L. R. & H. Yamazaki, 1995. The dichotomy of scales in the perception and aggregation behavior of zooplankton. J. Plankton Res. 17: 191-197.

    Google Scholar 

  • Haury, L. R., J. A. McGowan & P. H. Wiebe, 1978. Patterns and processes in the time space scales of plankton distribution. In Steele, J. H. (ed.), Spatial Pattern in Plankton Communities. Plenum Press, New York: 277-327.

    Google Scholar 

  • Hirota, R., 1990. Microdistribution of the marine copepod Oithona davisae in the shallow waters of Ariake-kai mud flats, Japan. Mar. Biol. 105: 307-312.

    Google Scholar 

  • Hopcroft, R. R. & J. C. Roff, 1996. Zooplankton growth rates: diel egg production in the copepods Oithona, Euterpina and Corycaeus from tropical waters. J. Plankton Res. 18: 789-803.

    Google Scholar 

  • Hutchinson, G. E., 1953. The concept of pattern in ecology. Proc. Acad. nat. Sci., Phila. 105: 1-12.

    Google Scholar 

  • Jakobsen, P. J. & G. H. Johnsen, 1988. The influence of food limitation on swarming behavior in the waterflea, Bosmina longispina. Anim. Behav. 36: 991-995.

    Google Scholar 

  • Jakobsen, P. J., K. Birkeland & G. H. Johnsen, 1994. Swarm location in zooplankton as an anti-predator defense mechanism. Anim. Behav. 47: 175-178.

    Google Scholar 

  • Jensen, K. H., P. J. Jakobsen & O. T. Kleiven, 1998. Fish kairomone regulation of internal swarm structure in Daphnia pulex (Cladocera: Crustacea). Hydrobiologia 368: 123-127.

    Google Scholar 

  • Kvam, O. V. & O. T. Kleiven, 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia 307: 177-184.

    Google Scholar 

  • Lloyd, M., 1967. Mean crowding. J. anim. Ecol. 36: 1-30.

    Google Scholar 

  • Lobel, P. S. & J. E. Randall, 1986. Swarming behavior of the hyperiid amphipod Anchylomera blossevilli. J. Plankton Res. 8: 253-262.

    Google Scholar 

  • Mauchline, J., 1971. Seasonal occurrence of mysids (Crustacea) and evidence of social behavior. J. mar. biol. Assc. U.K. 51: 809-825.

    Google Scholar 

  • Milinski, M., 1979. Can an experienced predator overcome the confusion of swarming prey more easily? Anim. Behav. 27: 1122-1126.

    Google Scholar 

  • Milinski, M., 1984. A predator's costs of overcoming the confusion effect of swarming prey. Anim. Behav. 32: 1157-1162.

    Google Scholar 

  • Mitchell, S. E., L. DeMeester, L. J. Weider & G. R. Carvalho, 1995. No evidence for kin-preferential swarming in a Daphnia magna population coexisting with fish. J. anim. Ecol. 64: 777-779.

    Google Scholar 

  • Modlin, R., 1990. Observations on the aggregative behavior of Mysidium columbiae. P.S.Z.N.I.Mar. Ecol. 11: 263-275.

    Google Scholar 

  • O'Brien, D. P.,1988. Surface schooling behavior of the coastal krill Nyctiphanes australis (Crustacea: Euphausiacea) off Tasmania, Australia. Mar. Ecol. Prog. Ser. 42: 219-233.

    Google Scholar 

  • Omori, M. &W. Hamner, 1982. Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar. Biol. 72: 193-200.

    Google Scholar 

  • Pijanowski, J., 1994. Fish-enhanced patchiness in Daphnia distribution. Verh. int. Ver. Limnol. 25: 2366-2368.

    Google Scholar 

  • Price, H. J., 1989. Swimming behavior of krill in response to algal patches: a mesocosm study. Limnol. Oceanogr. 34: 649-659.

    Google Scholar 

  • Ratzlaff, W., 1974. Swarming in Moina affinis. Limnol. Oceanogr. 19: 993-995.

    Google Scholar 

  • Stewart, S. E., 1996. Field behavior of Tripedalia cystophora (Class Cubozoa). Mar. Frsh. Behav. Physiol. 27: 175-188.

    Google Scholar 

  • Tanaka, M., H. Ueda & M. Azeta, 1987a. Near-bottom copepod aggregations around the nursery ground of the juvenile red sea bream in Shijiki Bay. Nippon Suisan Gakkaishi 53: 1537-1544.

    Google Scholar 

  • Tanaka, M., H. Ueda, M. Azeta & H. Sudo, 1987b. Significance of near-bottom copepod aggregations as food resources for the juvenile red sea bream in Shijiki Bay. Nippon Suisan Gakkaishi 53: 1545-1552.

    Google Scholar 

  • Ueda, H., A. Kuwahara, M. Tanaka & M. Azeta, 1983. Underwater observations on copepod swarms in temperate and subtropical waters. Mar. Ecol. Prog. Ser. 11: 165-171.

    Google Scholar 

  • Wishner, K. & H. Winn, 1987. Submersible observations of copepods in the vicinity of feeding right whales. EOS 68: 1687.

    Google Scholar 

  • Wishner, K., E. Durbin, A. Durbin, M. Macaulay, H. Winn & R. Kenney, 1988. Copepod patches and right whales in the Great South Channel off New England. Bull. mar. Sci. 43: 825-844.

    Google Scholar 

  • Young, J. P. W., 1978. Sexual swarms in Daphnia magna, a cyclic parthenogen. Freshwat. Biol. 8: 279-281.

    Google Scholar 

  • Young, S., P. J. Watt, J. P. Grover & D. Thomas, 1994. The unselfish swarm? J. anim. Ecol. 63: 611-618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambler, J.W. Zooplankton swarms: characteristics, proximal cues and proposed advantages. Hydrobiologia 480, 155–164 (2002). https://doi.org/10.1023/A:1021201605329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021201605329

Navigation