Skip to main content

Swarming and Behaviour in Antarctic Krill

  • Chapter
  • First Online:
Biology and Ecology of Antarctic Krill

Part of the book series: Advances in Polar Ecology ((AVPE))

Abstract

The behavioural ecology of Antarctic krill is dominated by their tendency to swarm. They form amongst the largest monospecific aggregations of biomass in the animal kingdom, with some swarms measuring up to 100 km2 and containing 2 million tonnes of krill. Swarms come in a multitude of shapes and sizes, and a greater understanding of the functional attributes of different swarm types is starting to emerge. This chapter will consider the spectrum of krill-swarms and -schools that have been described and some of the latest approaches taken to understand their shape and formation. The fundamental needs to avoid predation, feed, mate and spawn have often been attributed to being a major influence on swarming and we will examine these behaviours and their wider impacts. This chapter also considers how krill position themselves in the water column, altering their depth over diel and seasonal cycles, with further levels of modification depending on the environmental context. The ability of krill to migrate large distances is a major ecological feature of the Southern Ocean ecosystem, affecting the productivity of both planktonic and upper-trophic level communities, and we consider how such migrations are driven at the level of the swarm. New technologies are emerging that are providing previously unreported krill behaviours and we assess the future potential of these technologies to develop an even deeper appreciation of krill ethology. Also, we assess what impact predicted changes to the Southern Ocean environment will have on krill behavioural traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alben S, Spears K, Garth S, Murphy D, Yen J (2010) Coordination of multiple appendages in drag-based swimming. J R Soc Interface 7:1545–1557, rsif20100171

    Article  Google Scholar 

  • Alonzo SH, Mangel M (2001) Survival strategies and growth of krill: avoiding predators in space and time. Mar Ecol Prog Ser 209:203–217

    Article  Google Scholar 

  • Alonzo SH, Switzer PV, Mangel M (2003) Ecological games in space and time: the distribution and abundance of Antarctic krill and penguins. Ecology 84:1598–1607

    Article  Google Scholar 

  • Amon DJ, Glover AG, Wiklund H, Marsh L, Linse K, Rogers AD, Copley JT (2013) The discovery of natural whale fall in the Antarctic deep sea. Deep-Sea Res II 92:87–96

    Article  Google Scholar 

  • Atkinson A, Snyder R (1997) Krill-copepod interactions at South Georgia, Antarctica, I. Omnivory by Euphausia superba. Mar Ecol Prog Ser 160:63–76

    Article  Google Scholar 

  • Atkinson A, Meyer B, Stubing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter – II. Juveniles and adults. Limnol Oceanogr 47:953–966

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Rothery P, Loeb V, Ross RM, Quetin LB, Schmidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23

    Article  CAS  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Jessopp MJ, Loeb V (2009) A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res I 56:727–740

    Article  Google Scholar 

  • Axelsen BE, Anker-Nilssen T, Fossum P, Kvamme C, Nøttestad L (2001) Pretty patterns but a simple strategy: predator-prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar. Can J Zool 79:1586

    Article  Google Scholar 

  • Azzali M, Kalinowski J (1999) Spatial and temporal distribution of krill Euphausia superba biomass in the Ross Sea (1989–1990 and 1994). In: Faranda F, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, Berlin, pp 433–455

    Google Scholar 

  • Azzali M, Kalinowski J, Lanciani G, Cosimi G (1999) Characteristic properties and dynamic aspects of krill swarms from the Ross Sea. In: Faranda F, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, Berlin

    Google Scholar 

  • Benoit-Bird KJ (2009) Dynamic 3-dimensional structure of thin zooplankton layers is impacted by foraging fish. Mar Ecol Prog Ser 396:61–76

    Article  Google Scholar 

  • Boyd IL, Murray AWA (2001) Monitoring a marine ecosystem using responses of upper trophic level predators. J Anim Ecol 70:747–760

    Article  Google Scholar 

  • Brierley AS (2008) Antarctic ecosystem: are deep krill ecological outliers or portents of a paradigm shift. Curr Biol 18:R252–R254

    Article  CAS  Google Scholar 

  • Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20:1758–1762

    Article  CAS  Google Scholar 

  • Brierley AS, Cox MJ (2015) Fewer but not smaller schools in declining fish and krill populations. Curr Biol 25:75–79

    Article  CAS  Google Scholar 

  • Brierley AS, Watkins JL (2000) Effects of sea ice cover on the swarming behaviour of Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57:24–30

    Article  Google Scholar 

  • Brierley AS, Fernandes PG, Brandon MA, Armstromg F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG, Griffiths G (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295:1890–1892

    Article  CAS  Google Scholar 

  • Brierley AS, Fernandes PG, Brandon MA, Armstrong F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG, Griffiths G (2003) An investigation of avoidance by Antarctic krill of RRS James Clark Ross using the Autosub-2 autonomous underwater vehicle. Fish Res 60:569–576

    Article  Google Scholar 

  • Burrows MT, Tarling GA (2004) Effects of density dependence on diel vertical migration of populations of Northern krill: a genetic algorithm model. Mar Ecol Prog Ser 277:209–220

    Article  Google Scholar 

  • Carrera P, Churnside JH, Boyra G, Marques V, Scalabrin C, Uriarte A (2006) Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of Southern Europe. ICES J Mar Sci 63:1736–1750

    Article  Google Scholar 

  • Catton KB, Webster DR, Kawaguchi S, Yen J (2011) The hydrodynamic disturbances of two species of krill: implications for aggregation structure. J Exp Biol 214:1845–1856

    Article  Google Scholar 

  • CCAMLR (2010) Report of the fifth meeting of the Subgroup on Acoustic Survey and Analysis methods. SC-CCAMLR-XXIX/6, CCAMLR, Hobart, Tasmania

    Google Scholar 

  • Churnside JH (2007) Lidar detection of plankton in the ocean, Geoscience and Remote Sensing Symposium. IEEE, Barcelona

    Book  Google Scholar 

  • Churnside JH, Thorne RE (2005) Comparison of lidar measurements with 420 kHz echosounder measurements of zooplankton. Appl Optics 44:5504–5511

    Article  Google Scholar 

  • Clarke A, Morris DJ (1983) Towards an energy budget for krill: the physiology and biochemistry of Euphausia superba Dana. Polar Biol 2:69–86

    Article  Google Scholar 

  • Clarke A, Tyler PA (2008) Adult Antarctic krill feeding at abyssal depths. Curr Biol 18:282–285

    Article  CAS  Google Scholar 

  • Coetzee J (2000) Use of a shoal analysis and patch estimation system (SHAPES) to characterize sardine schools. Aquat Living Resour 13:1–10

    Article  Google Scholar 

  • Colbo K, Ross T, Brown C, Weber T (2014) A review of oceanographic applications of water column data from multibeam echosounders. Estuar Coast Shelf Sci 145:41–56

    Article  Google Scholar 

  • Cox MJ, Warren JD, Demer DA, Cutter GR, Brierley AS (2009) Multibeam observations of Antarctic krill provide new insight to krill-predator interactions. Mar Ecol Prog Ser 378:199–209

    Article  Google Scholar 

  • Cox MJ, Warren JD, Demer DA, Cutter GR, Brierley AS (2010) Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder. Deep-Sea Res II 57:508–518

    Article  Google Scholar 

  • Cox MJ, Watkins JL, Reid K, Brierley AS (2011a) Spatial and temporal variability in the structure of aggregations of Antarctic krill (Euphausia superba) around South Georgia, 1997–1999. ICES J Mar Sci 68:489–498

    Article  Google Scholar 

  • Cox MJ, Borchers DL, Demer DA, Cutter GR, Brierley AS (2011b) Estimating the density of Antarctic krill (Euphausia superba) from multibeam echosounder observations using distance sampling methods. J R Stat Soc: Ser C (Appl Stat) 50:301–316

    Article  Google Scholar 

  • Cram DJ, Agenbag JJ, Hampton I, Robertson AA (1979) SAS Protea cruise, 1978: the general results of the acoustics and remote sensing study, with recommendations for estimating the abundance of krill (Euphausia superba Dana). S Afr J Antarct Res 9:3–14

    Google Scholar 

  • Cresswell K, Tarling G, Thorpe S, Burrows M, Wiedemann J, Mangel M (2009) Diel vertical migration of Antarctic krill (Euphausia superba) is flexible during advection across the Scotia Sea. J Plankton Res 31:1265–1281

    Article  Google Scholar 

  • Cullen M, Kaufmann RS, Lowery MS (2003) Seasonal variation in biochemical indicators of physiological status in Euphausia superba from Port Foster, Deception Island, Antarctica. Deep-Sea Res II 50:1787–1798

    Article  CAS  Google Scholar 

  • De Robertis A, Schell C, Jaffe JS (2003) Acoustic observations of the swimming behaviour of the euphausiid Euphausia pacifica Hansen. ICES J Mar Sci 60:885–898

    Article  Google Scholar 

  • Décima M, Ohman MD, Robertis AD (2010) Body size dependence of euphausiid spatial patchiness. Limnol Oceanogr 55:777–788

    Article  Google Scholar 

  • Demer DA, Hewitt RP (1995) Bias in acoustic biomass estimates of Euphausia superba due to diel vertical migration. Deep-Sea Res I 42:455–475

    Article  Google Scholar 

  • Everson I (1982) Diurnal variations in mean volume backscattering strength of an Antarctic krill (Euphausia superba) patch. J Plankton Res 4:155–162

    Article  Google Scholar 

  • Färber-Lorda J, Beier E, Mayzaud P (2009) Morphological and biochemical differentiation in Antarctic krill. J Mar Syst 78:525–535

    Article  Google Scholar 

  • Fauchald P, Tveraa T (2006) Hierarchical patch dynamics and animal movement pattern. Oecologia 149:383–395

    Article  Google Scholar 

  • Fielding S, Watkins J, Collins M, Enderlein P, Venables H (2012) Acoustic determination of the distribution of fish and krill across the Scotia Sea in spring 2006, summer 2008 and autumn 2009. Deep-Sea Res II 59–60:173–188

    Article  Google Scholar 

  • Fielding S, Watkins JLW, Trathan PN, Enderlein P, Waluda CM, Stowasser G, Tarling GA, Murphy EJ (2014) Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J Mar Sci 71:2578–2588

    Article  Google Scholar 

  • Flores H, Van Franeker JA, Siegel V, Haraldsson M, Strass V, Meesters EH, Bathmann U, Wolff WJ (2012) The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS One 7:e31775

    Article  CAS  Google Scholar 

  • Folt CL, Burns CW (1999) Biological drivers of zooplankton patchiness. Trends Ecol Evol 14:300–305

    Article  Google Scholar 

  • Frazer TK, Quetin LB, Ross RM (1997) Abundance and distribution of larval krill, Euphausia superba, associated with annual sea ice in winter. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 107–111

    Google Scholar 

  • Fuiman LA, Davis RW, Williams TM (2002) Behaviour of midwater fishes under the Antarctic ice: observations by a predator. Mar Biol 140:815–822

    Article  Google Scholar 

  • Furlong ME, Paxton D, Stevenson P, Pebody M, McPhail SD, Perrett J (2012) Autosub long range: a long range deep diving AUV for ocean monitoring, Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES. IEEE, Southampton

    Google Scholar 

  • Gaten E, Tarling G, Dowse H, Kyriacou C, Rosato E (2008) Is vertical migration in Antarctic krill (Euphausia superba) influenced by an underlying circadian rhythm? J Genet 87:473–483

    Article  Google Scholar 

  • Gerlotto F, Bertrand S, Bez N, Gutierrez M (2006) Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J Mar Sci 63:1405–1417

    Article  Google Scholar 

  • Godlewska M (1996) Vertical migrations of krill (Euphausia superba Dana). Pol Arch Hydrobiol 43:9–63

    Google Scholar 

  • Goodall-Copestake WP, Perez-Espona S, Clark MS, Murphy EJ, Seear PJ, Tarling GA (2010) Swarms of diversity at the gene cox1 in Antarctic krill. Heredity 104:513–518

    Article  CAS  Google Scholar 

  • Greene CH, Wiebe P, Zamon J (1994) Acoustic visualization of patch dynamics in oceanic ecosystems. Oceanography 7:4–12

    Article  Google Scholar 

  • Greene CH, Meyer-Gutbrod EL, McGarry LP, Hufnagle LC, Chu D, McClatchie S, Packer A, Jung J-B, Acker T, Dorn H, Pelkie C (2014) A wave glider approach to fisheries acoustics: transforming how we monitor the nation’s commercial fisheries in the 21st century. Oceanography 27:168–174

    Article  Google Scholar 

  • Griffiths G (ed) (2003) Technology and applications of autonomous underwater vehicles, 2nd edn. Taylor and Francis Group, New York

    Google Scholar 

  • Grunbaum D (1998) Schooling as a strategy for taxis in a noisy environment. Evol Ecol 12:503–522

    Article  Google Scholar 

  • Guihen D, Fielding S, Murphy EJ, Heywood KJ, Griffiths G (2014) An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol Oceanogr Methods 12:373–389

    Article  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    Article  CAS  Google Scholar 

  • Hamner WM (1984a) Behavior of Antarctic krill Euphausia superba: chemoreception, feeding, schooling and molting. Science 220:433–435

    Article  Google Scholar 

  • Hamner WM (1984b) Aspects of schooling of Euphausia superba. J Crustac Biol 4(Special Issue):67–74

    Google Scholar 

  • Hamner WM, Hamner PP, Strand MP, Gilmer RW (1983) Behaviour of Antarctic krill (Euphausia superba): chemoreception, feeding, schooling and moulting. Science 220:433–435

    Article  CAS  Google Scholar 

  • Hernandez-Leon S, Portillo-Hahnefeld A, Almeida C, Becognee P, Moreno I (2001) Diel feeding behaviour of krill in the Gerlache strait, Antarctica. Mar Ecol Prog Ser 223:235–242

    Article  Google Scholar 

  • Higginbottom IR, Hosie GW (1989) Biomass and population structure of a large aggregation of krill near Prydz Bay, Antarctica. Mar Ecol Prog Ser 58:197–203

    Article  Google Scholar 

  • Hill SL, Belchier M, Collins MA, Fielding S, Murphy EJ, Trathan PN, Venables HJ, Waluda CM (2009) Multiple indicators suggest a strong ecosystem anomaly at South Georgia in 2009. CCAMLR WG-EMM-09/23. p 16

    Google Scholar 

  • Hirano Y, Matsuda T, Kawaguchi S (2003) Breeding Antarctic krill in captivity. Mar Freshw Behav Physiol 36:259–269

    Article  Google Scholar 

  • Hofmann EE, Haskell AE, Klinck JM, Lascara CM (2004) Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation. ICES J Mar Sci 61:617–631

    Article  Google Scholar 

  • Hooker SK, Boyd IL, Jessop M, Cox O, Blackwell J, Boveng PL, Bengtson JL (2002) Monitoring the prey-field of marine predators: combining digital imaging with datalogging tags. Mar Mamm Sci 18:680–697

    Article  Google Scholar 

  • Hooker SK, Heaslip SG, Matthiopoulos J, Cox O, Boyd IL (2008) Data sampling options for animal-borne video cameras: considerations based on deployments with Antarctic fur seals. Mar Technol Soc J 42:65–75

    Article  Google Scholar 

  • Huntley ME, Niiler PP (1995) Physical control of population dynamics in the Southern-Ocean. ICES J Mar Sci 52:457–468

    Article  Google Scholar 

  • Ikeda T, Dixon P (1982) Body shrinkage as a possible over-wintering mechanism of the Antarctic Krill, Euphausia superba Dana. J Exp Mar Biol Ecol 62:143–151

    Article  Google Scholar 

  • Jaffe JS (2013) A contemporary perspective on underwater optical imaging, OCEANS-Bergen, 2013 MTS/IEEE. Scripps Inst. of Oceanogr., U.C. San Diego, La Jolla

    Book  Google Scholar 

  • Jagannathan S, Bertsatos I, Symonds DT, Chen T, Nia HT, Jain AD, Andrews M, Gong Z, Nero RW, Ngor L, Jech M, Godø OR, Lee S, Ratilal P, Makris NC (2009) Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems. Mar Ecol Prog Ser 395:137–160

    Article  Google Scholar 

  • Jarman S, Deagle BE (2016) Genetics of Antarctic krill. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 247–278

    Google Scholar 

  • Johnson ML, Tarling GA (2008) Influence of individual state on swimming capacity and behaviour of Antarctic krill Euphausia superba. Mar Ecol Prog Ser 366:99–110

    Article  Google Scholar 

  • Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Kortzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders prospects for a global array. Oceanography 22:216–225

    Article  Google Scholar 

  • Kalinowski J, Witek Z (1985) Scheme for classifying Antarctic krill. Biomass Handb Ser 27:1–12

    Google Scholar 

  • Kanda K, Takagi K, Seki Y (1982) Movement of the larger swarms of Antartic krill Euphausia superba population off enderby land during 1976–1977 season. J Tokyo Univ Fish 68:25–42

    Google Scholar 

  • Kawaguchi S, King R, Meijers R, Osborn JE, Swadling KM, Ritz DA, Nicol S (2010) An experimental aquarium for observing the schooling behaviour of Antarctic krill (Euphausia superba). Deep-Sea Res II 57:683–692

    Article  Google Scholar 

  • Kawaguchi S, Kilpatrick R, Roberts L, King RA, Nicol S (2011) Ocean-bottom krill sex. J Plankton Res 33:1134–1138

    Article  Google Scholar 

  • Kils U (1981) Swimming behaviour, swimming performance and energy balance of Antarctic krill Euphausia superba. BIOMASS Sci Ser 3:1–121

    Google Scholar 

  • Klevjer TA, Tarling GA, Fielding S (2010) Swarm characteristics of Antarctic krill Euphausia superba relative to the proximity of land during summer in the Scotia Sea. Mar Ecol Prog Ser 409:157–170

    Article  Google Scholar 

  • Kohut J, Bernard K, Fraser W, Oliver MJ, Statscewich H, Winsor P, Miles T (2014) Studying the impact of local oceanographic processes on Adelie penguin foraging ecology. Mar Technol Soc J 48:25–34

    Article  Google Scholar 

  • Korb RE, Whitehouse MJ, Ward P (2004) SeaWiFS in the southern ocean: spatial and temporal variability in phytoplankton biomass around South Georgia. Deep-Sea Res II 51:99–116

    Article  CAS  Google Scholar 

  • Korneliussen RJ, Heggelund Y, Eliassen IK, Øye OK, Knutsen T, Dalen J (2009) Combining multibeam-sonar and multifrequency echosounder data: examples of the analysis and imaging of large euphausiid schools. ICES J Mar Sci 66:991–997

    Article  Google Scholar 

  • Krafft BA, Skaret G, Knutsen T, Melle W, Klevjer T, Soiland H (2012) Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean. Mar Ecol Prog Ser 465:69–83

    Article  Google Scholar 

  • Lascara CM, Hofmann EE, Ross RM, Quetin LB (1999) Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep-Sea Res I 46:951–984

    Article  Google Scholar 

  • Laws RM (1977) Seals and whales of the Southern Ocean. Phil Trans R Soc Lond Ser B 279:81–96

    Article  Google Scholar 

  • Lawson GL, Wiebe PH, Ashjian CJ, Stanton TK (2008) Euphausiid distribution along the Western Antarctic Peninsula – part B: distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep-Sea Res II 55:432–454

    Article  Google Scholar 

  • Liu Z-S (1990) Estimate of maximum penetration depth of LIDAR in coastal water of the China Sea. Proc SPIE – Int Soc Opt Eng 1302:655–661

    Google Scholar 

  • Macaulay MC, English TS, Mathisen OA (1984) Acoustic characterization of swarms of Antarctic krill (Euphausia superba) from Elephant Island and Bransfield Strait. J Crustac Biol 4(Special Issue):16–44

    Google Scholar 

  • Main CE, Collins MA (2011) Diet of the Antarctic starry skate Amblyraja georgiana (Rajidae, Chondrichthyes) at South Georgia (Southern Ocean). Polar Biol 34:389–396

    Article  Google Scholar 

  • Makris NC, Ratilal P, Symonds DT, Jagannathan S, Lee S, Nero RW (2006) Fish population and behaviour revealed by instantaneous continental shelf scale imaging. Science 311:660–663

    Article  CAS  Google Scholar 

  • Mangel M, Clark CW (1988) Dynamic modelling in behavioral ecology. Princeton University Press, Princeton, p 308

    Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill. Discov Rep 32:33–464

    Google Scholar 

  • Mathisen OA, Macaulay MC (1983) The morphological features of a super swarm of krill Euphausia superba. Mem Natl Inst Polar Res Spec Issue 28(Special Issue):153–164

    Google Scholar 

  • Mauchline J (1980) Studies on patches of krill Euphausia superba Dana. Biomass Handb Ser 6:36

    Google Scholar 

  • Mayer L (2006) Frontiers in seafloor mapping and visualization. Mar Geophys Res 27:7–17

    Article  Google Scholar 

  • Mayer L, Li Y, Melvin G (2002) 3D visualization for pelagic fisheries research and assessment. ICES J Mar Sci 59:216–225

    Article  Google Scholar 

  • Mazzotta GM, De Pittà C, Benna C, Tosatto SC, Lanfranchi G, Bertolucci C, Costa R (2010) A cry from the krill. Chronobiol Int 27:425–445

    Article  CAS  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Google Scholar 

  • Meyer B (2012) The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol 35:15–37

    Article  Google Scholar 

  • Meyer B, Teschke M (2016) Physiology of Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 145–174

    Google Scholar 

  • Meyer B, Atkinson A, Stubing D, Oettl B, Hagen W, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter – I. Furcilia III larvae. Limnol Oceanogr 47:943–952

    Article  Google Scholar 

  • Meyer B, Auerswald L, Siegel V, Spahic S, Pape C, Fach BA, Teschke M, Lopata AL, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18

    Article  CAS  Google Scholar 

  • Miller DGM, Hampton I (1989) Biology and ecology of the Antarctic krill, vol 9. SCOR, Cambridge, pp 1–166

    Google Scholar 

  • Morin A, Okubo A, Kawasaki K (1988) Acoustic data analysis and models of krill spatial distribution. Scientific Committee for the Conservation of Antarctic Marine Living Resources, Selected Scientific Papers part I. CCAMLR, Hobart, Tasmania, pp 311–329

    Google Scholar 

  • Morris DJ, Priddle J (1984) Observations on the feeding and moulting of the Antarctic krill, Euphausia superba. Br Antarct Surv Bull 65:57–63

    Google Scholar 

  • Murphy EJ, Reid K (2001) Modelling Southern Ocean krill population dynamics: biological processes generating fluctuations in the South Georgia ecosystem. Mar Ecol Prog Ser 217:175–189

    Article  Google Scholar 

  • Murphy E, Morris DJ, Watkins JL, Priddle J (1988) Scales of interaction between Antarctic krill and the environment. In: Sahrhage D (ed) Antarctic ocean and resources variability. Springer, Berlin, pp 120–130

    Chapter  Google Scholar 

  • Murphy D, Webster D, Kawaguchi S, King R, Yen J (2011) Metachronal swimming in Antarctic krill: gait kinematics and system design. Mar Biol 158:2541–2554

    Article  Google Scholar 

  • Murphy DW, Webster DR, Yen J (2013) The hydrodynamics of hovering in Antarctic krill. Limnol Oceanogr: Fluids Environ 3:240–255

    Article  Google Scholar 

  • Nowacek DP, Friedlaender AS, Halpin PN, Hazen EL, Johnston DW, Read AJ, Espinasse B, Zhou M, Zhu YW (2011) Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. PLoS One 6:e19173

    Article  CAS  Google Scholar 

  • O’Brien DP (1987) Direct observations of the behavior of Euphausia superba and Euphausia crystallorophias (Crustacea, Euphausiacea) under pack ice during the Antarctic spring of 1985. J Crustac Biol 7:437–448

    Article  Google Scholar 

  • O’Brien DP (1989) Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea, Mysidacea). J Exp Mar Biol Ecol 128:1–30

    Article  Google Scholar 

  • Olson RS, Knoester DB, Adami C (2013) Evolution of swarming behavior is shaped by how predators attack. arXiv preprint arXiv:13106012

    Google Scholar 

  • Onsrud MSR, Kaartvedt S (1998) Diel vertical migration of the krill Meganyctiphanes norvegica in relation to physical environment, food and predators. Mar Ecol Prog Ser 171:209–219

    Article  Google Scholar 

  • Osse TJ, Eriksen CC (2007) The Deepglider: a full ocean depth glider for oceanographic research. Oceans 2007. IEEE

    Google Scholar 

  • Patria MP, Wiese K (2004) Swimming in formation in krill (Euphausiacea), a hypothesis: dynamics of the flow field, properties of antennular sensor systems and a sensory-motor link. J Plankton Res 26:1315–1325

    Article  Google Scholar 

  • Pauly T, Nicol S, Higginbottom I, Hosie G, Kitchener J (2000) Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the austral summer of 1995/1996. Deep-Sea Res II 47:2465–2488

    Article  Google Scholar 

  • Pollard R, Sanders R, Lucas M, Statham P (2007) The CROZet natural iron bloom and EXport experiment (CROZEX). Deep-Sea Res II 54:1905–1914

    Article  CAS  Google Scholar 

  • Pollard RT, Salter I, Sanders RJ, Lucas MI, Moore CM, Mills RA, Statham PJ, Allen JT, Baker AR, Bakker DCE, Charette MA, Fielding S, Fones GR, French M, Hickman AE, Holland RJ, Hughes JA, Jickells TD, Lampitt RS, Morris PJ, Nedelec FH, Nielsdottir M, Planquette H, Popova EE, Poulton AJ, Read JF, Seeyave S, Smith T, Stinchcombe M, Taylor S, Thomalla S, Venables HJ, Williamson R, Zubkov MV (2009) Southern ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457:577–U581

    Article  CAS  Google Scholar 

  • Quetin LB, Ross RM (1991) Behavioural and physiological characteristics of Antarctic krill Euphausia superba Dana. Am Zool 31:49–63

    Article  Google Scholar 

  • Reid K, Brierley AS, Nevitt GA (2000) An initial examination of relationships between the distribution of whales and Antarctic krill Euphausia superba at South Georgia. J Cetac Res Manage 2:143–149

    Google Scholar 

  • Ritz DA (1994) Social aggregation in pelagic invertebrates. Adv Mar Biol 30:155–216

    Article  Google Scholar 

  • Ritz DA (2000) Is social aggregation in aquatic crustaceans a strategy to conserve energy. Can J Fish Aquat Sci 57:59–67

    Article  Google Scholar 

  • Ritz DA, Hobday AJ, Montgomery JC, Ward AJW (2011) Social aggregation in the pelagic zone with special reference to fish and invertebrates. In: Lesser M (ed) Advances in marine biology, vol 60. Academic, London, pp 161–227

    Google Scholar 

  • Ross RM, Quetin LB, Lascara CM (1996) Distribution of Antarctic krill and dominant zooplankton west of the Antarctic Peninsula. In: Ross RM, Hofmann EE, Quetin CM (eds) Foundations for ecological research west of the Antarctic Peninsula. AGU Antarctic Research Series American Geophysical Union, Washington, DC, pp 199–217

    Chapter  Google Scholar 

  • Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004) Underwater gliders for ocean research. Mar Technol Soc J 38:73–84

    Article  Google Scholar 

  • Sainmont J, Thygesen UH, Visser AW (2013) Diel vertical migration arising in a habitat selection game. Theor Ecol 6:241–251

    Article  Google Scholar 

  • Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay M, Pond D, Tarling G, Klevjer T, Allen C, Nicol S, Achterberg E (2011) Seabed foraging by Antarctic krill: Implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol Oceanogr 56:1411–1428

    Article  CAS  Google Scholar 

  • Schofield O, Glenn S, Moline M (2013) The robot ocean network. Am Sci 101:434–441

    Article  Google Scholar 

  • Schulenberger E, Wormuth JH, Loeb VJ (1984) A large swarm of Euphausia superba: overview of patch structure and composition. J Crustac Biol 4(Special Issue):75–95

    Google Scholar 

  • Seear P, Tarling GA, Teschke M, Meyer B, Thorne MAS, Clark MS, Gaten E, Rosato E (2009) Effects of simulated light regimes on gene expression in Antarctic krill (Euphausia superba Dana). J Exp Mar Biol Ecol 381:57–64

    Article  CAS  Google Scholar 

  • Seear PJ, Tarling GA, Burns G, Goodall-Copestake WP, Gaten E, Özkaya Ö, Rosata E (2010) Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics 11:582

    Article  CAS  Google Scholar 

  • Seear PJ, Goodall-Copestake WP, Fleming AH, Rosato E, Tarling GA (2012) Seasonal and spatial influences on gene expression in Antarctic krill Euphausia superba. Mar Ecol Prog Ser 467:61

    Article  CAS  Google Scholar 

  • Siegel V (2012) Krill stocks in high latitudes of the Antarctic Lazarev Sea: seasonal and interannual variation in distribution, abundance and demography. Polar Biol 35:1151–1177

    Article  Google Scholar 

  • Siegel V, Kalinowski J (1994) Krill demography and small-scale processes: a review. In: El-Sayed SZ (ed) Southern ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, pp 145–164

    Google Scholar 

  • Siegel V, Watkins JL (2016) Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 21–100

    Google Scholar 

  • Siegel V, Bergström B, Strömberg J, Schalk P (1990) Distribution, size frequencies and maturity stages of krill, Euphausia superba, in relation to sea-ice in the northern Weddell Sea. Polar Biol 10:549–557

    Google Scholar 

  • Squire JL, Krumboltz H (1981) Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques. Mar Technol Soc J 15:27–31

    Google Scholar 

  • Strand SW, Hamner WM (1990) Schooling behavior of Antarctic krill (Euphausia superba) in laboratory aquariums – reactions to chemical and visual stimuli. Mar Biol 106:355–359

    Article  Google Scholar 

  • Swadling KM (2006) Krill migration: up and down all night. Curr Biol 16:R173–R175

    Article  CAS  Google Scholar 

  • Swadling KM, Ritz DA, Nicol S, Osborn JE, Gurney LJ (2005) Respiration rate and cost of swimming for Antarctic krill, Euphausia superba, in large groups in the laboratory. Mar Biol 146:1169–1175

    Article  Google Scholar 

  • Takahashi A, Kokubun N, Mori Y, Shin HC (2008) Krill-feeding behaviour of gentoo penguins as shown by animal-borne camera loggers. Polar Biol 31:1291–1294

    Article  Google Scholar 

  • Taki K, Hayashi T, Naganobu M (2005) Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Sci 12:163–172

    Google Scholar 

  • Tarling GA, Johnson ML (2006) Satiation gives krill that sinking feeling. Curr Biol 16:83–84

    Article  CAS  Google Scholar 

  • Tarling GA, Thorpe SE (2014) Instantaneous movement of krill swarms in the Antarctic circumpolar current. Limnol Oceanogr 59:872–886

    Article  Google Scholar 

  • Tarling GA, Klevjer T, Fielding S, Watkins JL, Atkinson A, Murphy E, Korb R, Whitehouse M, Leaper R (2009) Variability and predictability of Antarctic krill swarm structure. Deep-Sea Res I 56:1994–2012

    Article  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2007) Simulated light regimes affect feeding and metabolism of Antarctic krill, Euphausia superba. Limnol Oceanogr 52:1046–1054

    Article  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2008) Effects of simulated light regimes on maturity and body composition of Antarctic krill, Euphausia superba. Mar Biol 154:315–324

    Article  Google Scholar 

  • Teschke M, Wendt S, Kawaguchi S, Kramer A, Meyer B (2011) A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba. PLoS One 6:e26090

    Article  CAS  Google Scholar 

  • Torres JJ, Donnelly J, Hopkins TL, Lancraft TM, Aarset AV, Ainley DG (1994) Proximate composition and overwintering strategies of Antarctic micronektonic crustacea. Mar Ecol Prog Ser 113:221–232

    Article  Google Scholar 

  • Trathan PN, Hill SL (2016) The importance of krill predation in the Southern Ocean. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 321–350

    Google Scholar 

  • Verdy A, Flierl G (2008) Evolution and social behavior in krill. Deep-Sea Res II 55:472–484

    Article  Google Scholar 

  • Watanabe YY, Takahashi A (2013) Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad Sci 110:2199–2204

    Article  CAS  Google Scholar 

  • Watkins JL (2000) Aggregation and vertical migration. In: Everson I (ed) Krill biology, ecology and fisheries. Blackwell Science, Oxford, pp 80–102

    Google Scholar 

  • Watkins JL, Murray AWA (1998) Layers of Antarctic krill, Euphausia superba: are they just long krill swarms? Mar Biol 131:237–247

    Article  Google Scholar 

  • Watkins JL, Buchholz F, Priddle J, Morris DJ, Ricketts C (1992) Variation in reproductive status of Antarctic krill swarms; evidence for a size-related sorting mechanism? Mar Ecol Prog Ser 82:163–174

    Article  Google Scholar 

  • Weber LH, El-Sayed SZ, Hampton I (1986) The variance spectra of phytoplankton, krill and water temperature in the Antarctic ocean, south of Africa. Deep-Sea Res 33:1327–1343

    Article  Google Scholar 

  • Whitehouse MJ, Meredith MP, Rothery P, Atkinson A, Ward P, Korb RE (2008) Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: forcings, characteristics and implications for lower trophic levels. Deep-Sea Res I 55:1218–1228

    Article  Google Scholar 

  • Wiese K (1996) Sensory capacities of euphausiids in the context of schooling. Mar Freshw Behav Physiol 28:183–194

    Article  Google Scholar 

  • Willis J (2007) Could whales have maintained a high abundance of krill? Evol Ecol Res 9:651

    Google Scholar 

  • Willis J (2014) Whales maintained a high abundance of krill; both are ecosystem engineers in the Southern Ocean. Mar Ecol Prog Ser 513:51–69

    Article  Google Scholar 

  • Zhou M, Dorland RD (2004) Aggregation and vertical migration behaviour of Euphausia superba. Deep-Sea Res II 51:2119–2137

    Article  Google Scholar 

  • Zhou M, Huntley ME (1996) The principle of biological attraction, demonstrated by the bio-continuum theory of zooplankton patch dynamics. J Mar Res 54:1017–1037

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Kornelliusson, K. Schmidt, D. Guihen and S. Kawaguchi for their permission to reproduce their figures within this review. GAT and SF were supported by the Ecosystems programme at the British Antarctic Survey, Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraint A. Tarling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tarling, G.A., Fielding, S. (2016). Swarming and Behaviour in Antarctic Krill. In: Siegel, V. (eds) Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-29279-3_8

Download citation

Publish with us

Policies and ethics