Skip to main content
Log in

Unconventional multifractal formalism and image analysis of natural fractals

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The unconventional multifractal formalism is compared with the conventional one frequently used to characterize nonlinear phenomena and complex systems. The algorithm for the unconventional formalism has been implemented on a computer. Numerical artifacts of the method are discussed. Empirical criteria for distinguishing the monofractality/multifractality of the spectra affected by statistical fluctuations are presented. The multifractal image analysis of the Lichenberg figures has confirmed a self-similar arrangement of surface streamers belonging to the special case of electrostatic separation discharges propagating along a surface of polymeric dislectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Mandelbrot: in Statistical Models and Turbulence, Lecture Notes in Physics (Eds.M. Roses and C. Van Atta), Springer, New York, 1972, p. 333.

    Google Scholar 

  2. B.B. Mandelbrot: J. Fluid Mech. 62 (1974) 331.

    Google Scholar 

  3. B.B. Mandelbrot: The Fractal Geometry of Nature, W.H. Freeman, New York, 1983.

    Google Scholar 

  4. P. Grassberger: Phys. Lett. A 97 (1983) 227.

    Google Scholar 

  5. H.G.E. Hentschel and I. Procaccia: Physica8(1983) 435.

    Google Scholar 

  6. P. Grassberger and I. Procaccia: Physica 9 (1983) 189.

    Google Scholar 

  7. P. Grassberger and I. Procaccia: Physica D 13 (1984) 34.

    Google Scholar 

  8. R. Badii and A. Politi: Phys. Rev. Lett. 52 (1984)1661.

    Google Scholar 

  9. R. Badii and A. Politi:J. Stat. Phys. 40 (1985) 725.

    Google Scholar 

  10. U. Frisch and G. Parisi: in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (Eds. M. Ghil, R. Benzi and G. Parisi), North-Holland, New York, 1985, p. 84.

    Google Scholar 

  11. M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, and J. 6Stavans: Phys. Rev. Lett. 55 (1985) 2798.

    Google Scholar 

  12. D. Bensimon, M.H. Jensen, and L.P. Kadanoff: Phys. Rev. A. 33 (1986) 3622.

    Google Scholar 

  13. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman: Phys. Rev. A 33 (1986) 1141.

    Google Scholar 

  14. J.A. Glazier, M.H. Jensen, A. Libchaber, and J. Stavans: Phys. Rev. A 34 (1986) 1621.

    Google Scholar 

  15. M.J. Feigenbaum, M.H. Jensen, and I. Procaccia: Phys. Rev. Lett. 57 (1986) 1503.

    Google Scholar 

  16. A.B. Chhabra and R.V. Jensen: Phys. Rev. Lett. 62 (1989) 1327.

    Google Scholar 

  17. A.B. Chhabra, C. Menevean, R.V. Jensen, and K.R. Sreenivasan: Phys. Rev. A40 (1989) 5284.

    Google Scholar 

  18. R.F. Voss: in Scaling Phenomena in Disordered Systems (Eds. R. Pynn and A. Skjeltorp), Plenum Press, New York, 1985, p. 1.

    Google Scholar 

  19. T. Ficker: J. Phys. D (to be published).

  20. T. Ficker: Phys. Rev. A 40 (1989) 3444.

    Google Scholar 

  21. T. Ficker: J. Appl. Phys. 78 (1995) 5289.

    Google Scholar 

  22. G.C. Lichtenberg: Novi Comm. Soc. Reg. Sci. Gott. 8 (1777) 168.

    Google Scholar 

  23. A.T. Morris: Br. J. Appl. Phys. 2 (1951) 98.

    Google Scholar 

  24. H. Bertein: J. Phys. D6 (1973) 1910.

    Google Scholar 

  25. Y. Murooka and S. Koyama: J. Appl. Phys. 50 (1979) 6200.

    Google Scholar 

  26. K. Nakanishi, A. Yoshioka, Y. Shibuya, and T. Nitta: in Gaseous Dielectrics III(Ed. L.G. Christophorou), Pergamon Press, New York, 1982, p. 365.

    Google Scholar 

  27. L. Niemeyer, L. Pietronero, and H.J. Wiesmann: Phys. Rev. Lett. 52 (1984) 1033.

    Google Scholar 

  28. K. Hidaka and Y. Murooka: J. Appl. Phys. 59 (1986) 87.

    Google Scholar 

  29. Y. Takahashi, H. Fujii, S. Wakabayashi, T. Hirano, and S. Kobayashi: IEEE Trans. Electr. Insul. EI-24 (1989) 573.

  30. L. Niemeyer: in Proc. 7th Internat. Symp. on High Voltage Engineering, Dresden 1991, Paper No. 81-07, p. 937.

  31. N. Femia, G. Lupo, and V. Tucci: 7th Internat. Symp. on High Voltage Engineering, Dresden 1991, p. 921.

  32. I. Gallimberti, G. Marchesi, and L. Niemeyer: in Proc. 7th Internat. Symp. on High Voltage Engineering, Dresden 1991, p.940.

  33. M. Murat: Phys. Rev. B 32(1985) 8420.

    Google Scholar 

  34. S. Fujimori: Japan J. Appl. Phys. 24(1985) 1198.

    Google Scholar 

  35. S. Satpathy: Phys. Rev. Lett. 57 (1986) 649.

    Google Scholar 

  36. H.J. Wiesmann and H.R. Zeller: J. Appl. Phys. 60 (1986) 1770.

    Google Scholar 

  37. C. Evertsz: J. Phys. A 22 (1989) L1061.

    Google Scholar 

  38. L. Pietronero and H.J. Wiesmann: Z. Phys. B 70 (1988) 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ficker, T., Druckmüller, M. & Martišek, D. Unconventional multifractal formalism and image analysis of natural fractals. Czechoslovak Journal of Physics 49, 1445–1459 (1999). https://doi.org/10.1023/A:1021157928415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021157928415

Keywords

Navigation