Skip to main content
Log in

Unusual nucleotide stability through C–H ⋅ ⋅ ⋅ water interaction in crystal: Recognition of nucleotide-water duplex-helix

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The direct and indirect roles of the C2- and C8-bonded water molecules (C–H ⋅ ⋅ ⋅ OW) in the stabilization of unusual inosine monophosphate containing nucleotides have been observed in their highly hydrated and amino acid cocrystals, which have been discussed in this work for the first time. The intermolecular H-bonding of WR (the oxygen of ribose 2′- and 3′-hydroxyls bonded water molecule, O2′ ⋅ ⋅ ⋅ WR ⋅ ⋅ ⋅ O3′) with the C2–H bonded OW's (OW ⋅ ⋅ ⋅ WR ≈ 2.43–2.78 Å) can influence the ribose and thus the nucleotide stability, whereas the water molecule (OW) of C8–H ⋅ ⋅ ⋅ OW can participate in the base stability by sandwiching the stacked purines through N7 ⋅ ⋅ ⋅ OW ⋅ ⋅ ⋅ N7 intermolecular interactions, with N7 ⋅ ⋅ ⋅ OW ≈ 2.63–2.75 Å. However, in some cases the water oxygen (OW) of C8–H can get intermolecularly H-bonded to water molecular oxygen WN (with OW ⋅ ⋅ ⋅ WN ≈ 2.57–2.85 Å), which has previously stabilized the nucleotide single-strand through intermolecular stacking N7 ⋅ ⋅ ⋅ WN ⋅ ⋅ ⋅ N7 interaction (N7 ⋅ ⋅ ⋅ WN ≈ 2.56–2.63 Å). The conjugal survival of the H-bonded nucleotide single-strand with the water-helix thus forming the duplex and its stabilization through the C–H ⋅ ⋅ ⋅ OW mediated water molecular (OW) cooperative H-bonding network, specially with the ribose and the base units, in the crystals could favor the support of single-stranding potentiality and thus the stability of the purine-rich RNAs or the small unusual nucleotides in the aquated environment besides the other interactive factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steiner, T.; Saenger, W. J. Am. Chem. Soc. 1993, 115, 4540–4547.

    Google Scholar 

  2. Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin, 1992.

    Google Scholar 

  3. Leonard, G.A.; McAuley-Hecht, K.; Brown, T.; Hunter, W.N. Acta Crystallogr., Sect. D 1995, 51, 136–139.

    Google Scholar 

  4. Mayer-Jung, C.; Moras, D.; Timsit, Y. J. Mol. Biol. 1997, 270(3), 328–335.

    Google Scholar 

  5. Aymami, J.; Nunn, C.M.; Neidle, S. Nucleic Acids Res. 1999, 27(13), 2691–2698.

    Google Scholar 

  6. Shi, K.; Biswas, R.; Mitra, S.N.; Sundaralingam, M. J. Mol. Biol. 2000, 299(1), 113–122.

    Google Scholar 

  7. Ghosh, A.; Bansal, M. J. Mol. Biol. 1999, 294(5), 1149–1158.

    Google Scholar 

  8. Ghosh, A.; Bansal, M. Acta Crystallogr., Sect. D 1999, 55(12), 2005–2012.

    Google Scholar 

  9. Desiraju, G.R. Acc. Chem. Res. 1991, 24, 290–296.

    Google Scholar 

  10. Bera, A.K.; Mukhopadhyay, B.P.; Ghosh. S.; Bhattacharya, S.; Chakraborty, S.; Banerjee, A. J. Chem. Crystallogr. 1999, 29(5), 531–540.

    Google Scholar 

  11. Bera, A.K.; Mukhopadhyay, B.P.; Pal, A.K.; Haldar, U.; Bhattacharya, S.; Banerjee, A. J. Chem. Crystallogr. 1998, 28(7), 509–516.

    Google Scholar 

  12. Mukhopadhyay, B.P.; Ghosh, S.; Banerjee, A. J. Chem. Crystallogr. 1995, 25, 477–485.

    Google Scholar 

  13. Bhattacharya, S.; Bera, A.K.; Mukhopadhyay, B.P.; Ghosh., S.; Chakraborty, S.; Pal, A.; Banerjee, A. J. Chem. Crystallogr. 2000, 30(10), 655–663.

    Google Scholar 

  14. Rao, S. T.; Sundralingam, M. J. Am. Chem. Soc. 1969, 91, 1210–1217.

    Google Scholar 

  15. Sriram, M.; Liaw, Y.-C.; Gao, Y.-G.; Wang, A.H.-J. Acta Crystallogr., Sect. C 1991, 47, 507–510.

    Google Scholar 

  16. Nagashima, N.; Wakabayashi, K.; Matzuzaki, T.; Iitaka, Y. Acta Crystallogr., Sect. B 1974, 30, 320–326.

    Google Scholar 

  17. Gabe, E.J.; Le Page, Y.; Charland, J.-P.; Lee, F.L; White, P.S. J. Appl. Crystallogr. 1989, 22, 384–387.

    Google Scholar 

  18. InsightII, version 95.0; Biosym Technologies: SanDiego, CA, 1995.

  19. Kielkopf, C.L.; White, S.; Szewczyk, J.W.; Turner, J.M.; Baird, E.E.; Dervan, P.B.; Rees, D.C. Science 1998, 282(5386), 111–115.

    Google Scholar 

  20. Steiner, T. Acta Crystallogr., Sect. D 1995, 51, 93–97.

    Google Scholar 

  21. Krishnan, R.; Seshadri, T.P.; Viswamitra, M.A. Nucleic Acid Res. 1991, 19(2), 379–384.

    Google Scholar 

  22. Krishnan, R.; Seshadri, T.P. J. Mol. Struct. 2000, 522, 135–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Bera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bera, A.K., Banerjee, A. & Mukhopadhyay, B.P. Unusual nucleotide stability through C–H ⋅ ⋅ ⋅ water interaction in crystal: Recognition of nucleotide-water duplex-helix. Journal of Chemical Crystallography 32, 531–536 (2002). https://doi.org/10.1023/A:1021113330458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021113330458

Navigation