Skip to main content
Log in

Supramolecular Properties Directed by Weak Interactions in a Copper (II) Complex Based on 8-Hydroxy Quinoline-Pyridine Binary Ligand Systems: Crystal Structure and Hirshfeld Surface Analyses

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The neutral Cu(II) complex [Cu(O,N-Q)2(N-4-MePy)2] (1) harvested from 8-hydroxy quinoline (8HQ) and 4-methyl pyridine (4-MePy) has been synthesized and structurally characterized. Single-crystal X-ray diffraction analysis reveals that 1 exhibits slightly distorted octahedral geometry and O–H···O hydrogen bonds link the asymmetric units forming an infinite chain geometry of C(6) graph-set-motif along with significant C–H···π and π···π stacking interactions revealing an interesting supramolecular packing assembly. A study of dnorm, shape index (S), curvedness (C) based Hirshfeld surfaces (HSs) and two-dimensional fingerprint (FP) plots at the molecular and atomic level quantify significant intermolecular contacts experienced by the neutral copper complex and the nature of ligand coordination to the metal centre. From molecular HS analysis and 2D FP plots, it was observed that C···H/H···C (33.9%) and H···H interactions (55.1%) have the major contribution compared to overall non-covalent interactions. The contribution of O···H/H···O (4.3%) and C···C (3.8%) contacts are minimum, but these interactions play vital role in the direction and organization of crystal packing.

Graphic Abstract

This manuscript outlines the impact of weak intermolecular interactions found in metal-based supramolecular assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Braga D, Desiraju GR, Miller J, Orpen AG, Price S (2002) Innovation in crystal engineering. CrystEngComm 4:500–509. https://doi.org/10.1039/B207466B

    Article  CAS  Google Scholar 

  2. Braga D, Brammer L, Champness NR (2005) Themed collection new trends in crystal engineering. CrystEngComm 7:1–19. https://doi.org/10.1039/B417413E

    Article  CAS  Google Scholar 

  3. Mukherjee S, Zaworotko MJ (2020) Crystal engineering of hybrid coordination networks: from form to function. Trends Chem 2:506–518. https://doi.org/10.1016/j.trechm.2020.02.013

    Article  CAS  Google Scholar 

  4. Seth SK, Sarkar D, Roy A, Kar T (2011) Insight into supramolecular self-assembly directed by weak interactions in acetophenone derivatives: crystal structures and Hirshfeld surface analyses. CrystEngComm 13:6728–6741. https://doi.org/10.1039/C1CE05670K

    Article  CAS  Google Scholar 

  5. Ji X, Ahmed M, Long L, Khashab NM, Huang F, Sessler JL (2019) Adhesive supramolecular polymeric materials constructed from macrocycle-based host-guest interactions. Chem Soc Rev 48:2682–2697. https://doi.org/10.1039/C8CS00955D

    Article  PubMed  CAS  Google Scholar 

  6. Ghosh K, Adhikari S, Frohlich R (2006) Water templated hydrogen-bonded network of pyridine amide appended carbamate in solid state. J Mol Struct 785:63–67. https://doi.org/10.1016/j.molstruc.2005.09.032

    Article  CAS  Google Scholar 

  7. Wang D-X, Wang M-X (2020) Exploring anion-π interactions and their applications in supramolecular chemistry. Acc Chem Res 53:1364–1380. https://doi.org/10.1021/acs.accounts.0c00243

    Article  PubMed  CAS  Google Scholar 

  8. Alkorta I, Elguero J, Frontera A (2020) Not only hydrogen bonds: other noncovalent interactions. Curr Comput-Aided Drug Des 10:180. https://doi.org/10.3390/cryst10030180

    Article  CAS  Google Scholar 

  9. Singh NJ, Min SK, Kim DY, Kim KS (2009) Comprehensive energy analysis for various types of π-interaction. J Chem Theory Comput 5:515–529. https://doi.org/10.1021/ct800471b

    Article  PubMed  CAS  Google Scholar 

  10. Park IW, Yoo J, Adhikari S, Park JS, Sessler JL, Lee CH (2012) Calix[4]pyrrole-based heteroditopic ion-pair receptor that displays anion-modulated, cation-binding behavior. Chem Eur J 18:15073–15078. https://doi.org/10.1002/chem.201202777

    Article  PubMed  CAS  Google Scholar 

  11. Park IW, Yoo J, Kim B, Adhikari S, Kim SK, Yeon Y, Haynes CJ, Sutton JL, Tong CC, Lynch VM, Sessler JL, Gale PA, Lee CH (2012) Oligoether-strapped calix[4]pyrrole: an ion-pair receptor displaying cation-dependent chloride anion transport. Chem Eur J 18:2514–2523. https://doi.org/10.1002/chem.201103239

    Article  PubMed  CAS  Google Scholar 

  12. Ghosh K, Adhikari S, Frohlick R, Petasalakis JD, Theodorakopoulos G (2011) Experimental and theoretical anion binding studies on coumarin linked thiourea and urea molecules. J Mol Struct 1004:193–203. https://doi.org/10.1016/j.molstruc.2011.08.004

    Article  CAS  Google Scholar 

  13. Amabilino DB, Gale PA (2017) Supramolecular chemistry anniversary. Chem Soc Rev 46:2376–2377. https://doi.org/10.1039/C7CS90037F

    Article  PubMed  CAS  Google Scholar 

  14. Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host−guest interactions. Chem Rev 115:7794–7839. https://doi.org/10.1021/cr500392w

    Article  PubMed  CAS  Google Scholar 

  15. Ghosh K, Adhikari S, Frohlich R (2008) A pyridine-based macrocyclic host for urea and acetone. Tetrahedron Lett 49:5063–5066. https://doi.org/10.1016/j.tetlet.2008.06.030

    Article  CAS  Google Scholar 

  16. Ghosh K, Adhikari S (2006) Fluorescence sensing of tartaric acid: a case of excimer emission caused by hydrogen bond-mediated complexation. Tetrahedron Lett 47:3577–3581. https://doi.org/10.1016/j.tetlet.2006.03.044

    Article  CAS  Google Scholar 

  17. Ghosh K, Adhikari S (2006) Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors. Tetrahedron Lett 47:8165–8169. https://doi.org/10.1016/j.tetlet.2006.09.035

    Article  CAS  Google Scholar 

  18. Fujii A, Shibasaki K, Kazama T, Itaya R, Mikamia N, Tsuzuki S (2008) Experimental and theoretical determination of the accurate interaction energies in benzene–halomethane: the unique nature of the activated CH/π interaction of haloalkanes. Phys Chem Chem Phys 10:2836–2843. https://doi.org/10.1039/B717053J

    Article  PubMed  CAS  Google Scholar 

  19. Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68–83. https://doi.org/10.1039/B614208G

    Article  PubMed  CAS  Google Scholar 

  20. Tiekink ERT (2017) Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord Chem Rev 345:209–228. https://doi.org/10.1016/j.ccr.2017.01.009

    Article  CAS  Google Scholar 

  21. Wei P, Yan X, Huang F (2015) Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem Soc Rev 44:815–832. https://doi.org/10.1039/C4CS00327F

    Article  PubMed  CAS  Google Scholar 

  22. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 57:10257–10274. https://doi.org/10.1021/jm501100b

    Article  PubMed  CAS  Google Scholar 

  23. Adhikari S, Kar D, Fröhlich R, Ghosh K (2019) Pyridine-based macrocyclic and open receptors for urea. ChemistrySelect 4:12825–12831. https://doi.org/10.1002/slct.201902451

    Article  CAS  Google Scholar 

  24. Ghosh K, Adhikari S (2008) A quinoline-based tripodal fluororeceptor for citric acid. Tetrahedron Lett. 49:658–663; https://doi.org/10.1016/j.tetlet.2007.11.139.

  25. Ghosh K, Adhikari S, Chattopadhyay AP, Chowdhury PR (2008) Quinoline based receptor in fluorometric discrimination of carboxylic acids. Beilstein J Org Chem 4:52. https://doi.org/10.3762/bjoc.4.52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des Dev Ther 7:1157–1178. https://doi.org/10.2147/DDDT.S49763

    Article  Google Scholar 

  27. Afzal O, Kumar S, Haider R, Ali R, Kumar R, Jaggi M, Bawa S (2015) A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 97:871–910. https://doi.org/10.1016/j.ejmech.2014.07.044

    Article  PubMed  CAS  Google Scholar 

  28. Musiol R (2017) An overview of quinoline as a privileged scaffold in cancer drug discovery. Exp Opin Drug Discov 12:583–597. https://doi.org/10.1080/17460441.2017.1319357

    Article  CAS  Google Scholar 

  29. Singh D, Nishal V, Bhagwan S, Saini RK, Singh I (2018) Electroluminescent materials: metal complexes of 8-hydroxyquinoline—a review. Mater Des 156:215–228. https://doi.org/10.1016/j.matdes.2018.06.036

    Article  CAS  Google Scholar 

  30. Oliveri V, Vecchio G (2016) 8-Hydroxyquinolines in medicinal chemistry: a structural perspective. Eur J Med Chem 120:252–274. https://doi.org/10.1016/j.ejmech.2016.05.007

    Article  PubMed  CAS  Google Scholar 

  31. Zhai Q-G, Li S-N, Gao X, Ji W-J, Jiang Y-C, Hu M-C (2010) Self-assembly of a novel 3D copper(I)-tetrazolate supramolecular framework via interpenetration of porous 2D double-layer motifs. Inorg Chem Commun 13:211–214. https://doi.org/10.1016/j.inoche.2009.11.027

    Article  CAS  Google Scholar 

  32. Thomas-Gipson J, Beobide G, Castillo O, Fröba M, Hoffmann F, Luque A, Pérez-Yáñez S, Román P (2014) Paddle-wheel shaped copper(ii)-adenine discrete entities as supramolecular building blocks to afford porous supramolecular metal-organic frameworks (SMOFs). Cryst Growth Des 14:4019–4029. https://doi.org/10.1021/cg500634y

    Article  CAS  Google Scholar 

  33. Adams J (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8:307–315. https://doi.org/10.1016/S1359-6446(03)02647-3

    Article  PubMed  CAS  Google Scholar 

  34. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE (2005) Anticancer activity of the antibiotic clioquinol. Cancer Res 65:3389–3395. https://doi.org/10.1158/0008-5472.CAN-04-3577

    Article  PubMed  CAS  Google Scholar 

  35. Li L, Xu B (2008) Synthesis and characterization of 5-substituted 8-hydroxyquinoline derivatives and their metal complexes. Tetrahedron 64:10986–10995. https://doi.org/10.1016/j.tet.2008.09.081

    Article  CAS  Google Scholar 

  36. Zhai S, Yang L, Cui QC, Sun Y, Dou QP, Yan B (2010) Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. J Biol Inorg Chem 15:259–269. https://doi.org/10.1007/s00775-009-0594-5

    Article  PubMed  CAS  Google Scholar 

  37. Spackman MA, McKinnon JJ, Jayatilaka D (2008) Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 10:377–388. https://doi.org/10.1039/B715227B

    Article  CAS  Google Scholar 

  38. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138. https://doi.org/10.1007/BF00549096

    Article  CAS  Google Scholar 

  39. Soliman SM, Elsilk SE, El-Faham A (2020) Syntheses, structure, Hirshfeld analysis and antimicrobial activity of four new Co(II) complexes with s-triazine-based pincer ligandInorg. Chim Acta. https://doi.org/10.1016/j.ica.2020.119753

    Article  Google Scholar 

  40. Singh MK, Sutradhar S, Paul B, Adhikari S, Laskar F, Butcher RJ, Acharya S, Das A (2017) A new cadmium(II) complex with bridging dithiolate ligand: synthesis, crystal structure and antifungal activity study. J Mol Struct 1139:395–399. https://doi.org/10.1016/j.molstruc.2017.03.073

    Article  CAS  Google Scholar 

  41. Singh MK, Sutradhar S, Paul B, Adhikari S, Laskar F, Acharya S, Chakraborty D, Biswas S, Das A, Roy S, Frontera A (2018) J Mol Struct 1164:334–343. https://doi.org/10.1016/j.molstruc.2018.03.073

    Article  CAS  Google Scholar 

  42. Adhikari S, Bhattacharjee T, Nath P, Das A, Jasinski JP, Butcher RJ, Maiti D (2020) Inorg Chim Acta 512:119877. https://doi.org/10.1016/j.ica.2020.119877

    Article  CAS  Google Scholar 

  43. Adhikari S, Bhattacharjee T, Gupta R, Daniliuc C-G, Montazerozohori M, Naghiha R, Masoudiasl A (2020) Polyhedron 192:114838. https://doi.org/10.1016/j.poly.2020.114838

    Article  CAS  Google Scholar 

  44. Adhikari S, Bhattacharjee T, Das A, Roy S, Daniliuc C-G, Zaręba JK, Bauzá A, Frontera A (2020) CrystEngComm 22:8023–8035. https://doi.org/10.1039/D0CE01233E

    Article  CAS  Google Scholar 

  45. Adhikari S, Bhattacharjee T, Bhattacharjee S, Daniliuc C-G, Frontera A, Lopato EM, Bernhard S (2021) Dalton Trans 50:5632–5643. https://doi.org/10.1039/D1DT00352F

    Article  PubMed  CAS  Google Scholar 

  46. Adhikari S, Bhattacharjee T, Butcher RJ, Porchia M, De Franco M, Marzano C, Gandin V, Tisato F (2019) Inorg Chim Acta 498:119098. https://doi.org/10.1016/j.ica.2019.119098

    Article  CAS  Google Scholar 

  47. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  48. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  49. Uson I, Sheldrick GM (2018) An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr Sect D D74:106–116. https://doi.org/10.1107/S2059798317015121

    Article  Google Scholar 

  50. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A Found Adv 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  51. Bruker. SMART, SAINT and SADABS. Bruker AXS, Inc., Madison,WI, USA (2007).

  52. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  CAS  Google Scholar 

  53. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermol­ecular interactions in molecular crystals. Acta Crystallogr B 60:627–668. https://doi.org/10.1107/S0108768104020300

    Article  PubMed  CAS  Google Scholar 

  54. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun. https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  55. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  56. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D and Spackman MA (2017) Crystal Explorer17, University of Western Australia, 2017.

  57. Kharadi GJ, Patel KD (2009) Antibacterial, spectral and thermal aspects of drug based-Cu(II) mixed ligand complexes. Appl Organomet Chem 23:391–397. https://doi.org/10.1002/aoc.1530

    Article  CAS  Google Scholar 

  58. Basu Baul TS, Nongsiej K, Biswas K, Joshi SR, Höpfl H (2018) Pyridine aided progression from amorphous to crystalline bis([5-(aryl)-1-diazenyl]quinolin-8-olato)zinc(II) compounds—solution and solid-state structural characterization, nanoparticle formation and antibacterial activity. Inorg Chim Acta 482:756–773. https://doi.org/10.1016/j.ica.2018.06.049

    Article  CAS  Google Scholar 

  59. Sohncke L (1879) Die entwicklung einer theorie der krystallstruktur [The development of a theory of crystal structure]. B.G. Teubner, Leipzig (in German)

    Google Scholar 

  60. Castiñeiras A, García-Santos I, González-Perez JM, Bauzá A, Zaręba JK, Niclós-Gutiérrez J, Torres R, Vilchez E, Frontera A (2018) Multicomponent supramolecular assemblies of melamine and α-hydroxycarboxylic acids: understanding the hydrogen bonding patterns and their physicochemical consequences. Cryst Growth Des 18:6786–6800. https://doi.org/10.1021/acs.cgd.8b01035

    Article  CAS  Google Scholar 

  61. Mahmoudi G, Zarȩba JK, Bauzá A, Kubicki M, Bartyzel A, Keramidas AD, Butusov L, Mirosław B, Frontera A (2018) Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: prevalence of chelate ring stacking and substituent effects. CrystEngComm 20:1065–1076. https://doi.org/10.1039/C7CE02166F

    Article  CAS  Google Scholar 

  62. Banik R, Roy S, Kirillov AM, Bauza A, Frontera A, Rodriguez-Dieguez A, Salas JM, Maniukiewicz W, Das SK, Das S (2016) Two mixed-ligand cadmium(ii) compounds bearing 5-nitrosopyrimidine and N-donor aromatic blocks: self-assembly generation, structural and topological features, DFT studies, and Hirshfeld surface analysis. Cryst Eng Comm 18:5647. https://doi.org/10.1039/C6CE00989A

    Article  CAS  Google Scholar 

  63. Mahmoudi G, Zarȩba JK, Gurbanov AV, Bauzá A, Zubkov FI, Kubicki M, Stilinović V, Kinzhybalo V, Frontera A (2017) Benzyl dihydrazone versus thiosemicarbazone Schiff bases: effects on the supramolecular arrangement of cobalt thiocyanate complexes and the generation of CoN6 and CoN4S2 coordination spheres. Eur J Inorg Chem 40:4763–4772. https://doi.org/10.1002/ejic.201700955

    Article  CAS  Google Scholar 

  64. Tan YS, Otero-de-la-Roza A, Jotani MM, Tiekink ERT (2020) Snap frozen! capturing two metastable polymorphs in a tetramorphic one-dimensional coordination polymer constructed from cadmium, dithiophosphate, and 4-pyridinealdazine. Cryst Growth Des 20:3272–3283. https://doi.org/10.1021/acs.cgd.0c00082

    Article  CAS  Google Scholar 

  65. Pinto CB, Santos LHRD, Rodrigues BL (2020) Response of Hirshfeld surface to structural modifications in transition-metal coordination compounds. Cryst Growth Des 20:4827–4838. https://doi.org/10.1021/acs.cgd.0c00613

    Article  CAS  Google Scholar 

  66. Meyer AY (1986) Molecular mechanics and molecular shape. III. Surface area and cross-sectional areas of organic molecules. J Comput Chem 7:144–152. https://doi.org/10.1002/jcc.540070207

    Article  PubMed  CAS  Google Scholar 

  67. Rudnick J, Gaspari G (1986) The asphericity of random walks. J Phys A 19:191–193. https://doi.org/10.1088/0305-4470/19/4/004

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Prof. Kumaresh Ghosh, Department of Chemistry, University of Kalyani, Nadia, India for IR and UV-Vis spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Adhikari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1215 kb)

Supplementary file2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, T., Adhikari, S. & Butcher, R.J. Supramolecular Properties Directed by Weak Interactions in a Copper (II) Complex Based on 8-Hydroxy Quinoline-Pyridine Binary Ligand Systems: Crystal Structure and Hirshfeld Surface Analyses. J Chem Crystallogr 52, 422–433 (2022). https://doi.org/10.1007/s10870-021-00903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00903-3

Keywords

Navigation